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A B S T R A C T   

This study focuses on scoring, selecting, and developing physical fragility (i.e., the probability of 
reaching or exceeding a certain damage state given a specific hazard intensity) and/or vulnera
bility (i.e., the probability of impact - or consequence - given a specific hazard intensity) models 
for assets of interest, with particular emphasis on buildings. Given a set of multiple relevant 
hazards for a selected case-study region, the proposed procedure involves 1) mapping the relevant 
asset classes (i.e., construction types for a given occupancy) in the region to a set of existing 
candidate fragility, vulnerability and/or damage-to-impact models, also accounting for specific 
modelling requirements (e.g., time dependency due to ageing/deterioration, multi-hazard in
teractions); 2) scoring the candidate models according to relevant criteria to select the most 
suitable models for a given application; or 3) using state-of-the-art numerical or empirical 
methods to develop fragility/vulnerability models not already available. The approach is 
demonstrated for the buildings of the virtual urban testbed “Tomorrowville”, considering 
earthquakes, floods, and debris flows as case-study hazards.   

1. Introduction and motivation 

Natural-hazard-induced disaster risk results from complex interactions between exposure, hazard, and vulnerability. According to 
widely accepted definitions (e.g., United Nations Office for Disaster Risk Reduction, UNDRR [1]), a hazard is “a process, phenomenon 
or human activity that may cause loss of life, injury or other health impacts, property damage, social and economic disruption or 
environmental degradation”; exposure is “the situation of people, infrastructure, housing, production capacities and other tangible 
human assets located in hazard-prone areas”; and vulnerability is referred to as “the conditions determined by physical, social, eco
nomic and environmental factors or processes which increase the susceptibility of an individual, a community, asset or system to the 
impacts of hazards”. This paper specifically focuses on the physical vulnerability component of (multiple) natural-hazard disaster risk. 
The paper discusses the appraisal, scoring, selection, and development of models - collectively referred to as “physical impact models” 
(see Section 2 for more details) - that broadly quantify the consequences of a set of hazard intensity measures (IMs) on physical assets 
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(e.g., buildings, infrastructure components or system). Systemic vulnerability (e.g., [2]), originating from the mutual link
ages/interactions among physical, economic, and social systems, is outside the scope of this paper. Furthermore, specific emphasis is 
placed on buildings, which act as critical nodes in modelling interacting physical infrastructure systems and social networks (e.g., [3,4, 
5]). 

Detailed information on individual physical assets within a given region of interest may not always be available due to a lack of 
specific data (particularly in Global South contexts) required to select or derive appropriate asset-specific exposure and vulnerability 
models. In addition, for forward-looking risk analyses that focus on possible future configurations of an urban system (e.g., [4,6,7]), 
asset-by-asset information is not necessarily considered within the underlying procedures (e.g., urban planning) or modelling (e.g., 
spontaneous urban growth prediction). Therefore, for vulnerability characterisation purposes, assets are generally grouped into classes 
based on a set of common attributes that define their exposure. These attributes uniquely describe an asset class (e.g., buildings, 
bridges, lifeline components), detailing the common features directly associated with the physical impacts of multiple natural hazards. 
Then, each class is assigned relevant fragility (i.e., the probability of reaching or exceeding a certain damage state, DS, given a pre
scribed level of a hazard IM) or vulnerability (i.e., the probability of impact - or consequence - given a prescribed level of a hazard IM) 
models, which may account for single or multiple hazards. Vulnerability models may be linked to fragility models using appropriate 
damage-to-impact (i.e., the conditional probability of impact given a certain DS) models. 

Each component of disaster risk may involve temporal dependence. Time-dependent fragility/vulnerability is herein defined as a 
variation over time of the parameters of the physical impact model for a given asset class definition (e.g., ageing of the asset materials 
increases fragility over time but generally does not change the considered asset class). Moreover, fragility/vulnerability may change 
due to environmental asset deterioration (e.g., corrosion of structural components), the effects of sequential hazard events (e.g., 
damage accumulation due to multiple earthquake aftershock occurrences), or structural strengthening efforts (e.g., structural retrofit, 
climate adaptation engineering [8]). For accurate risk estimations, capturing the above dynamic effects is crucial (e.g., [9]). 

Many fragility/vulnerability models are available for different combinations of asset types and hazards (single or multiple) within 
various sources, including literature review studies, compendia, and interactive online databases. However, selecting the most suitable 
models for a given asset class within a specific geographical context is a significant challenge for risk modellers or other end-users, 
particularly in forward-looking contexts such as risk-informed urban planning and future urban development. Different choices of 
physical impact models may lead to remarkably different risk estimates, which can affect decision making based on these estimates. 
This paper provides a structured methodology for scoring, selecting, and developing multi-hazard physical fragility/vulnerability 
models of asset classes (with greater emphasis on buildings) within any selected case-study region in support of multi-hazard risk 
modelling and quantification. The process consists of three main steps: 1) mapping the relevant asset classes in a considered area to a 
set of existing candidate physical impact models, also accounting for specific modelling requirements (e.g., time dependency, multi- 
hazard interaction); 2) scoring the candidate models according to relevant criteria, to select the most suitable models for a given 
application; or 3) using state-of-the-art empirical or synthetic (analytical or numerical) methods to develop fragility/vulnerability 
models not already available. 

The paper is organised as follows. Section 2 introduces the types of physical impact models considered as part of the proposed 
methodology and discusses them in the context of a selection of natural hazard types. After describing it (in Section 3), the proposed 
procedure is then demonstrated (Section 4) for the virtual urban testbed “Tomorrowville” [10], which reflects typical (and dynamic) 
demographic, socioeconomic and physical features of urban landscapes in the Global South. Tomorrowville is designed as a 
demonstration of the Tomorrow’s Cities Decision Support Environment (TCDSE; [3,4,5]), which is a framework that brings different 
actors together to envision possible futures of a city and facilitates multi-hazard risk-informed urban planning, design, and devel
opment accordingly [11]. The illustrative application of this paper directly relates to the “Physical Infrastructure Impact” module of 
the TCDSE as applied to Tomorrowville, considering earthquakes, floods, and debris flows as case-study hazards. A detailed description 
of physics-based hazard modelling for Tomorrowville is discussed in Jenkins et al. [12]. 

2. Overview of physical impact models for natural hazards 

This section introduces the types of physical impact models (i.e., fragility relationships, vulnerability relationships, damage-to- 
impact models) that form the basis of the scoring/selection/development methodology proposed in Section 3. These models may 
be empirical, synthetic, or expert-elicitation-based. Empirical models require collecting data related to previous observations of 
natural-hazard (post-event) physical impacts (damage and/or consequences). Synthetic physical impact models are derived from 
analytical or numerical modelling of an asset’s “response” (e.g., structural and/or nonstructural) to one or more hazards of interest, 
which is linked to physical damage and consequence metrics of interest. Expert-elicitation-based models involve several experts 
providing educated guesses of the damage (or consequence) that would occur to a specific asset class when subjected to a prescribed 
level of a hazard IM. Each model type may be derived based on asset-level damage and/or impact data (i.e., global-level analysis) or 
damage and/or impact data for each component of the considered asset (i.e., component-by-component analysis) aggregated to obtain 
asset-level results. Empirical and expert-elicitation physical impact models are usually derived from a global-level analysis, while 
synthetic models can be based on either global or component-by-component analyses. 

This section begins with the mathematical definitions of these models and then provides a brief overview of their implementation 
for selected natural-hazard contexts, including the relevant damage causes or mechanisms, adopted IMs, and other pertinent infor
mation on how the different physical impact model types are structured. 
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2.1. Mathematical definitions 

2.1.1. Fragility relationships 
Asset-level fragility relationships define the probability of some discrete limit (or damage) state (dsi) being reached or exceeded for 

an asset of interest, as a function of an hazard IM, i.e., P(DS≥ dsi|IM = im). (Note that lower-case symbols refer to a particular value of 
the random variables denoted in upper case). The response of an asset to a hazard-induced loading (e.g., earthquake-induced ground- 
motion time history, flood-induced hydrostatic/hydrodynamic forces, etc.) described by a certain IM is quantified using an engineering 
demand parameter (EDP, e.g., building horizontal roof displacement, floor accelerations, the stress level in a given structural 
component). The selected IM for the analysis should be both efficient and sufficient (e.g., [13]). An efficient IM leads to a relatively 
small variability in estimating the selected EDP given a prescribed value of IM. A sufficient IM renders the estimation of the EDP for all 
IM levels independent of all other hazard causal parameters (e.g., earthquake magnitude and location). Fragility relationships can also 
be represented using vector-valued IMs (as described in Section 2.1.4). 

Fragility functions typically take the form of lognormal cumulative distribution functions (CDFs, e.g., [14,15]): 

P(DS≥ dsi|IM= im)=Φ

⎛

⎜
⎜
⎝

ln
(

im
θ

)

β

⎞

⎟
⎟
⎠, (1)  

where Φ(•) is the standard normal CDF, θ is the median (i.e., the value of IM that results in a 50% probability of reaching or exceeding 
dsi), and β is the standard deviation of ln(IM) for dsi. This mathematical form has several features that are particularly convenient in the 
context of fragility modelling, including the exclusion of non-plausible negative IM values and the fact that the θ and β parameters are 
enough to define the model completely. An extensive description of other potential mathematical forms that can describe fragility is 
provided in Rosetto et al. [16] and Lallemant et al. [17], among many others. Both Lallemant et al. [17] and Jalayer et al. [18] also 
discuss the possibility of updating fragility functions (if more information – from experimental results or post-event fieldwork, for 
instance – subsequently becomes known) using Bayesian methods. A more advanced fragility function model, which explicitly ac
counts for the ordinality of damage (i.e., the fact that DSs are both ordered and related in a physical sense) through simultaneous 
calibration of functions for multiple DSs, was recently presented in Nguyen and Lallemant [19]. 

2.1.2. Vulnerability relationships 
Vulnerability relationships are used to estimate the probability of continuous outcomes (O) – typically in the form of an impact (or 

consequence) metric (e.g., economic losses, downtime, casualties) – associated with a given IM, i.e., P(O > o| IM = im). Vulnerability 
functions that produce absolute values of outcomes are generally expressed in the form: 

P(O> o| IM= im)= 1 − F(o|im), (2)  

where F (.) is some type of CDF. Vulnerability functions that output relative values of outcome (e.g., economic loss normalised with 
respect to the asset value) can take the form of a Beta distribution, given its ability to flexibly model values between 0 and 1 [20,21]. In 
this case, 

f(o|IM= im)=
oq− 1(1 − o)r− 1

В(q, r)
(3)  

where r and q specify the shape of the distribution, and B(.) denotes the beta function. 
Vulnerability models often neglect uncertainty in the outcome, simply estimating the mean (absolute or relative) value of an 

outcome conditional on IM, i.e., E(O|IM = im). These functions are typically derived using some form of regression curve/surface 
[22–25]. 

2.1.3. Damage-to-impact models 
Damage-to-impact models – often referred to as consequence or damage-to-loss models – bridge the gap between fragility and 

vulnerability analysis in the absence of appropriate parametric vulnerability relationships, by mapping discrete DSs to continuous 
impact metrics [26]. Probabilistic versions of these models take the form P(O> o|DS = dsi), and can be used to derive a vulnerability 
function through: 

P(O> o|IM= im)=
∑n

i=1
P(O> o|DS= dsi)P(DS= dsi|IM= im) (4)  

where P(DS = dsi|IM = im) = P(DS≥ dsi− 1| IM = im) − P(DS≥ dsi| IM = im), n denotes the number of DSs, and all other variables and 
expressions are as previously defined. Given the similar mathematical forms of vulnerability and damage-to-impact models, the Beta 
distribution can also be used to model f(o|DS = dsi), e.g., [26]. Deterministic damage-to-impact models - expressed as E(O|DS= dsi) - 
translate P(DS= dsi|IM= im) into E(O|IM= im) through an analogue form of Eq. (4). (e.g.,[27]). 

2.1.4. Extensions to multi-hazard, multi-IM, or time-dependent contexts 
Multi-hazard physical impact models can be formulated in a vector-valued (e.g., [28]) or a state-dependent format (e.g., [29]). 

R. Gentile et al.                                                                                                                                                                                                         



International Journal of Disaster Risk Reduction 82 (2022) 103365

4

Section 2.4 describes the possible scope of both formats for different hazards. Fig. 1 shows examples of vector-valued and 
state-dependent fragility relationships for dual-hazard interactions. Vector-valued fragility models (surfaces) can be used to model 
impacts due to concurrent compound hazard intensities (e.g., storm surge and high wind speed in a hurricane; [30]). They are 
expressed in the form P(DS≥ dsi|IM), where IM is a vector of IMs. P(DS≥ dsi|IM) can be defined using a multi-variate cumulative 
lognormal distribution function (e.g., [31]), which is a multi-variate generalisation of Eq. (1). A general mathematical formulation for 
single- or multi-hazard fragility relationships based on various multivariate distributions is provided by Zentner [32], who suggests 
using the Bayesian information criterion to select the most appropriate one. Note that vector-valued fragility models can also be used to 
characterise single-hazard conditions (e.g., flood models depending on both water depth and flood duration). 

State-dependent fragility models define the fragility of an asset for a given secondary hazard of interest, conditional on its (damage) 
state after a primary hazard of interest. These models are expressed in the form P(DS(Hk)≥ dsi

⃒
⃒IM(Hk),S(Hj)) and represent the 

probability of exceeding the DS threshold (dsi) for the k-th hazard (Hk), given an IM for hazard k, IM(Hk), and the pre-existing state of 
the asset after a previous hazard S(Hj), which may refer to damage (e.g., [33]) or an alteration of its structural loading (e.g., [34]), for 
instance. P(DS(Hk)≥ dsi

⃒
⃒IM(Hk), S(Hj)) can be determined using Eq. (1), based on data that accounts for S(Hj). State-dependent 

fragility models for which S coincides with a pre-existing DS implicitly assume that an asset’s DS transitions caused by different 
events are independent, such that the values of DS evolve according to a Markov process, i.e., the present value of DS for the asset only 
depends on its previous value of DS, rather than its entire history of damage. Note that the state of an asset may also evolve with time, 
S(Hj, t), and may even be independent of hazard, S(t). S(t) may represent the effect of a physical process (e.g., deterioration due to 
corrosion) on an asset’s ability to resist a hazard loading with a given IM, for instance. Some models [35,36] use a quadratic model for 
S(t), and consequently for θ(S) and β(S), to capture the corrosion-induced evolution of earthquake fragility for bridge systems for 
instance. 

Multi-hazard, multi-IM, and/or time-dependent vulnerability relationships are usually defined analogously to Eq. (2), adopting 
similar statistical techniques and assumptions. They can be expressed in a vector-valued (e.g., [37]) or a state-dependent format (e.g., 
[33]), as appropriate. Multi-hazard and/or time-dependent vulnerability models can be derived directly (e.g., [37]) or by combining a 
set of state-dependent fragility relationships with a damage-to-impact model (e.g., [33]). Damage-to-impact models do not require a 
multi-hazard or time-dependent formulation (i.e., Eq. (4) can still be used) since they directly depend on damage rather than IMs. 
Multi-hazard and/or time-dependent fragility and vulnerability models can only be adopted if damage is measured consistently across 
the entire scope of the analysis (Section 2.4 describes the challenges of achieving this). 

2.2. Physical impact models for earthquake-induced ground shaking 

Earthquakes involve a sudden release of energy from a seismogenic source (e.g., a geological fault). Earthquake-induced ground 
motions (shaking) represent the surface expression of the resulting propagation of seismic waves (energy) from the source. These 
motions generate a vibratory response in physical assets. Depending on the dynamic structural characteristics of the asset (e.g., 
stiffness, strength, ductility capacity, hysteretic behaviour, strength degradation behaviour, plastic mechanism) as well as the nature of 
the ground shaking experienced at its location, this vibratory response (in the form of displacement/acceleration of its lateral load 
resisting system) may lead to some level of physical damage in its structural (and non-structural) components. Common damage 
mechanisms caused by earthquake-induced ground shaking include brittle failure (e.g., in unreinforced masonry and adobe con
struction), the formation of plastic hinges and shear failures (in reinforced-concrete buildings), anchorage/connection failures (e.g., in 
timber and steel constructions), and support failures (e.g., in bridges). 

Typical IMs for earthquake-induced ground-shaking physical impact models typically incorporate some measurement of the 
amplitude (strength) of the ground motion at the asset’s location, such as peak ground acceleration or spectral acceleration at the 
asset’s fundamental period (e.g., [38]). More comprehensive IMs that also account for the spectral shape of the ground-motion record, 

Fig. 1. Example a) vector-valued; b) and state-dependent dual-hazard fragility models. IM: intensity measure; DS: damage state; S: state; H: hazard.  
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such as inelastic spectral displacement (e.g., [39]), as well as its duration [40], are becoming increasingly popular because of their 
superior correlation with the asset’s structural response (i.e., their greater efficiency; see Section 2.1.1). A more detailed description of 
the selection of appropriate IMs, as well as a more critical discussion on empirical and synthetic earthquake physical impact models, 
can be found in Silva et al. [41]. 

The scientific literature on earthquake physical impact modelling is rich and is likely to be the most extensive across all natural 
hazards. Discrete DSs considered in asset-level earthquake fragility, and damage-to-impact models represent a progressive deterio
ration in the asset’s performance. A typical set of earthquake-related DSs for a given asset encompasses “minor”, “moderate”, 
“extensive”, and “complete” categories (e.g., FEMA, Federal Emergency Management Agency [27]). The exact damage implications of 
each state will depend on pertinent characteristics of the asset in question, such as its type (building, bridge, etc), structural material, 
geometry and detailing. The most common impact metrics incorporated in seismic vulnerability and damage-to-impact models are 
economic losses (e.g., [42,43], i.e., the repair cost of the physical damage), casualties (e.g., [44]), and repair/recovery time (e.g., [45]). 
Recently introduced metrics include debris cover [46] and environmental impact [47]. 

2.3. Physical impact models for flooding and mass-movement hazards 

Floods and mass movements (including debris flows, landslides, lahars, etc.) are gravitationally-driven flows of water and sedi
ment. Both floods and mass movements are triggered by intense rainfall, which is likely to increase in intensity and frequency due to 
climate change (e.g., [48]). These flows often feature strong morphodynamics that can result in transitional behaviour as erosion and 
deposition modify the momentum and rheology of the flow (e.g., dilute flash flood transitioning into a more concentrated debris flow 
as material is entrained). 

Fluvial flooding (herein referred to as flooding) occurs when water levels rise in streams, rivers or lakes overflow onto adjacent 
land. In the vicinity of the built environment, this generally results in low-velocity flows dominated by hydrostatic pressure. Flash 
floods are short-duration, locally isolated events that feature high peak discharge (i.e., high volumetric flow rates) and are triggered by 
intense rainfall or by the sudden release of large volumes of water, such as from glacial lake outbursts or dam failure (e.g., [49]). Flash 
floods often feature much higher flow velocities in the built environment than fluvial floods, where they can entrain loose and eroded 
debris (e.g., [50]). Because flash floods and debris flows share physical behaviour and potential asset damage mechanisms, and to 
further differentiate between fluvial and flash floods, the latter types of floods are herein referred to as debris flows, noting that the 
exact behaviour and damage caused by these flows is a direct function of solids concentration. Landslides are broadly defined to 
encompass concentrated slips, falls, and flows of debris, rock or sediment down slopes under the influence of gravity. The extensiveness 
of this definition includes events with characteristic velocities that span at least ten orders of magnitude [51]. 

Floods and mass movements cause damage to the built environment via four principal mechanisms: 1) pressure in the bulk flow; 2) 
collisions from debris transported by the flow; 3) erosion scouring foundations; and 4) sediment deposition partially or fully burying 
structures and other infrastructure (e.g., roads). The pressure in the bulk flow can be split into hydrostatic and hydrodynamic com
ponents. The hydrostatic component depends on the flow thickness (h) and bulk density (ρ) of the flow (ρgh, where g is the acceleration 
of gravity). As the vertical component of most overland flows can be neglected, the hydrostatic pressure component is a reasonable 
approximation for bulk pressure. However, during strong impacts with buildings and other structures, vertical accelerations in the flow 
cause the bulk pressure to increase significantly (e.g., [52,53]). The maximum (or peak) pressure on a vertical structure depends on the 
bulk flow velocity squared (ρv2, [52,54–56]). Despite their shared physical behaviour and damage mechanisms, physical impacts due 
to floods, landslides, debris flows, and other mass movements are typically considered separately (excluding some exceptions), and it is 
challenging to define a unified approach. 

The appropriate selection of IMs is crucial to capturing the above mechanisms in related physical impact models. Flood depth is 
typically employed as an IM for low-velocity flows, such as fluvial flooding [57]. Both flood duration [58] and flood velocity [59] are 
important additional IMs in areas with low soil permeability and steep terrain, respectively. The level of contamination in floods (e.g., 
due to oil) has additionally been incorporated as a secondary IM for flood damage in some models (e.g., [60,61]). Velocity is used as a 
single IM for debris flows [62]. Momentum-based IMs, which simultaneously account for a combination of velocity, flow depth, and 
hydrodynamic stresses, are additionally used to quantify damage (impacts) from debris flows (e.g., [55,63]). Because debris flows 
propagate as a wave with a leading front comprised of coarse granular material (e.g., [64,65]), their impacts on structures can be 
modelled as impulses, such that earthquake-related IMs like spectral displacement can also be leveraged (e.g., [66]). Due to the long 
timescales involved, defining a single IM for slow-moving landslides is difficult. Physical impact models developed for these hazards 
have used an IM representing the equivalent cumulative displacement of an area susceptible to landslides [67]. The landslide safety 
factor [68] has also been used as an IM in slow-moving landslide models since it is related to the mechanical stability of the considered 
slope. However, there are many challenges in using this measure to quantitatively estimate physical impact, given the large number of 
parameters required to calculate it and its sensitivity to groundwater infiltration, which is a highly nonlinear and hysteretic physical 
process. 

The physical impact of floods on assets is generally dominated by the contents’ loss due to inundation (rather than structural or 
non-structural damage, at least for more formal, well-engineered types of assets). As such, most physical impact models for flood- 
related hazards are empirical vulnerability models and account for economic losses as a function of the flood depth (e.g., [69–71]). 
These models are generally (and rather confusingly) referred to as “depth-damage” vulnerability functions under the implicit 
assumption that monetary repair costs are a reasonable proxy for physical damage. Synthetic models such as INSYDE (IN-depth 
SYnthetic model for flood Damage Estimation, [72]) present component-by-component vulnerability functions in terms of monetary 
losses. Other types of flood impacts captured in developed models include casualties [73] and repair time [74]. Fragility functions are 
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becoming increasingly available for flooding hazards (see Nofal and van de Lindt [75] for a review), the most recent being those in 
[Nofal et al. 69], which describe a series of component-by-component DSs that directly correspond to probabilistic economic loss 
outcomes for pluvial and fluvial flooding events. However, damage-to-impact models for flooding are rare and may not be 
hazard-specific [74]. In addition, the development of physical impact models for both debris flows and landslides is limited compared 
to flooding and earthquake hazards. This can be attributed to the complex dynamics of debris flow and landslide hazards [76], dif
ficulties in estimating the associated dynamic responses of structures [52], and a lack of significant potential to cause human losses (in 
the case of slow-moving landslides). Exceptions include: (1) fragility models for debris flows that describe DSs using terminology 
adopted from earthquake fragility models (see Section 2.2 and [66,77,78]); and (2) fragility and vulnerability curves for landslides 
[67] that use similar DSs to those described for earthquakes (see Section 2.2) and represent impact in terms of a continuous equivalent 
damage level. 

2.4. Physical impact models for multi-hazard and time-dependent contexts 

Many regions in the world are prone to more than one natural hazard, such that structures/infrastructure systems can be subjected 
to more than one hazard during their lifetime (e.g., [79]). Effective risk-informed decision-making and/or risk management priori
tisation is only possible if all relevant threats are considered and analysed (e.g., [80–84]). This requirement is compounded by the fact 
that two or more hazards affecting the same location in a relatively short period could result in physical or social impacts greater than 
the sum of the effects from each individual hazard [85,86]. A multi-risk approach, accounting for the interaction of risks from multiple 
hazards, is therefore necessary. This type of approach should incorporate interactions at the level of hazard, exposure, and phys
ical/social impact ([87]; therefore, multi-hazard fragility/vulnerability models play a significant role. In addition, a lifecycle risk 
analysis is likely needed to accurately consider the interaction of single or multiple hazard events of different occurrences and resulting 
intensities. This involves simulating the time between different events and may require time-dependent (or state-dependent) physical 
impact models. 

Gill and Malamud [84] define multi-hazard interactions to include situations in which: a hazard triggers one or more other hazards; 
the probability of a hazard is increased or decreased; there is a spatiotemporal coincidence of different hazards. As pointed out by [88], 
these classifications share characteristics with further studies that identify the following three mechanisms of interaction: the trigger or 
causality, usually referred to “domino effects” or “triggered hazards”; the influence, indicating increased/decreased probability or 
magnitude, without acting as a trigger; the independent coincidence, when the spatial or temporal scale of independent hazards 
partially intersects. However, the classification proposed by Zaghi et al. [87] which also considers other risk components apart from 
hazard, fits best with the scope of this study. This classification considers two levels of interaction: 1) level-one interactions that occur 
through the source, time and/or frequency of occurrence of two or more hazards and are independent of the presence of physical assets 
(e.g., earthquake-tsunami sequence); 2) level-two interactions, which occur through the effects of the hazards on the site of interest, 
accounting for the presence of physical assets, and capture system-level disruptions as well as social and economic effects (e.g., 
flood-induced scour may increase a bridge’s earthquake fragility, although the earthquake IM is not affected by the scour). Bruneau 
et al. [89] note that the classification in Gill and Malamud is independent of the effects of the hazards, and it, therefore, only applies to 
level-one interactions. This section only deals with physical impact modelling related to level-two interactions (i.e., that involve a 
modification of a fragility/vulnerability curve due to cumulative damage to an asset) since level-one interactions do not require 
changes to the underlying impact models. Thus, repeated instances of the same hazard (e.g., earthquake sequences, compound 
flooding) are considered multiple hazards. 

Physical impact models that adequately capture level-two interactions must be based on a consistent definition of structural and 

Fig. 2. Availability of quantitative multi (dual)-hazard physical impact models. Each mark indicates that the literature includes at least one (building or bridge) 
physical impact model for the considered dual-hazard combination. 
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non-structural damage. These models should adequately capture the damage mechanisms relevant to the considered hazards, also 
including their cumulative effects (i.e., how damage due to one hazard may reduce safety margins for the considered asset/component, 
thus increasing damage from other hazards). Most multi-hazard physical impact models are based on uncoupled damage scales for 
each hazard (e.g., HAZUS, [27]), but some attempts to incorporate consistent damage scales have been made in the literature (e.g., [90, 
91]). Describing cumulative damage requires defining an ad-hoc scale that depends on the specific asset and hazards, (e.g., [92]). 
Synthetic, physics-based models of an asset that capture damage accumulation under different hazards are possibly the only viable 
approach to address the above-mentioned challenges. (In fact, it is unlikely that empirical damage data for specific asset/hazard 
combinations are available). Furthermore, these synthetic models must use appropriate static or dynamic mechanical characterisations 
of the asset materials and components to capture the interactions of the relevant damage mechanisms. For example, to model the 
interacting effects of wind and earthquake on a building, it is necessary to characterise the material hysteresis (i.e., the evolution of 
their stiffness under unloading-reloading cycles) and its strength degradation under sustained cyclic deformation (e.g., [93]). 

Quantitative multi-hazard physical impact models are comparatively less common in the literature than single-hazard ones. Rather 
than providing a thorough literature review, which is outside the scope of this paper, this section selects examples of multi-hazard 
physical impact models for buildings and bridges to qualitatively assess model availability in terms of the number of considered 
hazards and their nature (e.g., synthetic, empirical). Most available models involve fragility relationships for two hazards, with some 
exceptions discussed below. Fig. 2 summarises dual combinations of hazards for which it was possible to find at least one quantitative 
physical impact model. 

Most multi-hazard physical impact models for buildings focus on sequential earthquake events/ground motions (e.g. [29,33, 
94–96], and take the form of state-dependent fragility models for different types of buildings and DSs of interest. Some such fragility 
models include time-dependent considerations (measured using a consistent damage scale), such as the effect of structural ageing on 
concrete buildings during earthquake sequences (e.g., [97]). Petrone et al. [98], among others, provide state-dependent fragility 
models for reinforced concrete buildings exposed to earthquake-tsunami sequences. Earthquake-landslide state-dependent fragility 
models are provided in Miluccio et al. [99], for example. Fragility models combining earthquake and wind actions are available in Li 
et al. [100 and Zheng et al. 101], for instance. The model in Lee and Rosowsky [34] describes the state-dependent earthquake fragility 
of buildings that are pre-loaded with snow. The proposed model in Asprone et al. [102] relates to the blast fragility of reinforced 
concrete structures in the presence of seismic risk. Compound flooding, related to the concurrence of multiple hazard drivers (e.g., 
heavy rainfall, extreme river flow, and storm surge), can be effectively modelled using standard depth-damage flood vulnerability 
models based on the maximum-in-time water depth as an IM (e.g., [30]). Realistic modelling of hurricane impact requires a 
multi-hazard approach involving wind-induced pressure, surge and waves. The physical impact model in Nofal et al. [103] accounts for 
the probability of structural damage by combining vector-valued flood fragility models, vector-valued surge-wave fragility models, 
and wind pressure fragility functions. Luo et al. [104] propose a framework to produce physics-based models for sequentially and 
concurrently-occurring debris flow impacts. Models in Zuccaro et al. [105] account for fragility due to earthquakes and pyroclastic 
flows that follow ash fall events. 

Examples of multi-hazard vulnerability modelling involve the flood-induced scour on bridge foundations (e.g., [106]), the com
bined effect of flood-induced scour and ground shaking (e.g., [107,108]), ground shaking and liquefaction on bridges (e.g., [109]), 
liquefaction and lateral ground displacement (e.g., [110]), earthquake sequences (e.g., [111]), and earthquake-tsunami sequences (e. 
g., [112]). A more-detailed literature review on multi-hazard infrastructure vulnerability models (including roads, bridges, em
bankments, tunnels, retaining walls, slopes, etc.) is provided in Argyroudis et al. [113], which includes liquefaction, landslides, debris 

Fig. 3. Proposed methodology to score and select physical impact models for a given asset class.  
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flow and flood and the combined effects of flood-induced scouring and earthquakes. According to this review, most multi-hazard 
vulnerability models have been developed for bridges. 

The choice of physical impact models for a given analysis must consider whether the adopted risk model can account for lifecycle 
considerations. A lifecycle risk analysis should account for the probabilistic distributions of the hazard-event occurrences, use an 
appropriate multi-hazard model to quantify relevant impact metrics, record the state of the asset after each event, and finally combine 
the results to calculate the probability distribution of the lifecycle impact (e.g., [114]). Choosing an appropriate physical impact model 
in this context depends on the types of successive events and their inter-event time; the repair (or recovery) strategy in place for the 
asset (which affects the probability of incomplete repair for a given DS and time); and the considered time horizon for the analysis. 

Lifecycle risk analysis models considering only one hazard type (note that multiple events of the same hazard type are regarded as 
multiple hazards, as discussed above) in the literature often consider an “instantaneous” repair of the considered asset after each event 
(e.g., [115]). These models require a single-hazard physical impact model, which should be time-dependent to capture any asset 
degradation between two events; in this case, S = S(t) from Section 2.1.1. Lifecycle models considering triggered hazards (e.g., [116], 
for mainshock-aftershock earthquake sequences) require an S = S(Hj). Multi-hazard (dependent or independent) lifecycle risk models 
that consider the probability of repairs being completed before the next event (e.g., [117], for earthquakes and flood-induced scour) 
require appropriate S = S(Hj, t) models. Lifecycle risk models that relax the Markovian assumption on the DS of the asset require 
n-variate vector-value physical impact models (as defined in Section 2.1.1), where n is the potential number of hazard events (of the 
same or different type) that could occur before the asset is repaired. Choosing n, and the considered hazard types, may be determined 
based on the considered repair strategy for the asset. However, to the best of the authors’ knowledge, no quantitative method is 
currently available to accomplish this goal. 

3. Proposed characterisation procedure for physical impact models 

The proposed methodology (Fig. 3) for scoring, selecting, and developing physical impact models starts after selecting one or more 
natural hazards, independent or interacting, which are relevant for a selected case-study area. Although this is not strictly part of the 
proposed methodology, a useful tool to assist this choice is Thinkhazard (https://thinkhazard.org, last accessed June 2022), which 
provides a general view of hazard susceptibility on a global scale. Next, assets within the considered area are grouped into classes 
according to a taxonomy model, which may require different sets of general parameters specific to the identified asset class and 
hazards (e.g., occupancy, geometry parameters, design level). Section 3.1 discusses codifying the required asset class characteristics in 
a multi-hazard taxonomy string and the minimum set of these parameters required for different hazard/asset-class combinations. The 
taxonomy string is then used to map the hazard/asset-class combination to relevant candidate impact models. As discussed in Section 
3.2, this process can involve models from interactive databases, model compendia, or literature reviews. It should incorporate general 
considerations of the trade-off between simplicity, accuracy, and data requirements of the overarching risk model. The considered 
candidate models are then scored and ranked according to a set of criteria to determine the most appropriate one (Section 3.3). If the 
above search does not provide any satisfactory result, the proposed procedure involves developing new physical impact models based 
on an empirical or synthetic (analytical or numerical) approach, as detailed in Section 3.4. The proposed procedure should be applied 
for multiple asset classes in parallel to determine whether physical impact models for different classes can be derived using a consistent 
methodology, which would lead to a desirable consistency in the damage/impact estimations of the considered risk assessment. 

The main goal of this procedure is to facilitate the consistent appraisal and selection of a set of candidate physical impact models for 
use within multi-hazard risk modelling applications. The procedure may also be beneficial for application to new physical assets to be 
constructed as part of a risk-informed urban development process. Any values provided for relevant input parameters (e.g., specific 
criteria, threshold values for screening, scoring schemes, and weights; see Section 3.2 for more details) are only provided as recom
mendations; users are encouraged to adjust these parameters according to their specific needs. A code repository supporting the 
application of this procedure is provided at github.com/robgen/rankFragilityVulnerability (last accessed June 2022). 

3.1. Preliminary phase: defining the exposure taxonomy string of the considered asset classes 

The proposed procedure starts with identifying the physical attributes of the asset classes of interest directly correlated with the 
physical impacts induced by relevant natural hazards. For example, the lateral-load resisting system attribute is used to determine 
earthquake and wind fragility (among other hazards), the presence of a basement is relevant to flood fragility, and the roof typology 
(and its features) is a factor that influences hurricane fragility. The building occupancy type affects, for instance, the likely distribution 
of building occupants during any given day. For example, a school will be (near) fully occupied during certain hours on school days, 
predominantly by children. Moreover, the occupancy type defines the components likely to be present within a building. For example, 
industrial buildings contain machinery. These attributes are used to develop a series of exposure taxonomy strings, which consist of a 
combination of alphanumeric labels that contain asset-class-specific attribute information. These strings are an ideal data format for 
storage within a database (e.g., Geographic Information Systems, GIS) to facilitate interaction between the exposure and vulnerability 
modules of a risk model. 

A taxonomy string should be general enough to account for multiple hazards, scales, and asset classes. The global exposure database 
for all (GED4ALL [118]) best meets the above criteria since it facilitates links to many existing databases of physical impact models and 
is therefore leveraged in the proposed methodology. It covers buildings, roads, railways, bridges, pipelines, storage tanks, power grids, 
energy generation facilities, crops, livestock, forestry, and socio-economic data. This taxonomy was developed considering earth
quakes, volcanoes, floods, tsunamis, storms, cyclones and drought. GED4ALL, also referred to as Global Earthquake Model (GEM) 
taxonomy 3.0, is the multi-hazard generalisation of the GEM 2.0 taxonomy [119], which is in turn derived from previous taxonomies 
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such as those of ATC-13 [120], the European macro-seismic scale (EMS-98, [121]), HAZUS [122], and PAGER-STR [123]). 
The GED4ALL taxonomy strings include different attributes for different asset types and facilitate three different levels of 

refinement/detail (from Level 1 to Level 3) in the input that accommodate various degrees of available data. This flexibility could be 
particularly convenient for data-scarce regions which are especially prevalent in developing countries. Table 1 and Table 2 respec
tively provide the GED4ALL attributes for buildings and bridges, suggesting those that are strictly required versus optional ones in 
relation to the physical impact modelling of different hazards. An example of a Level 1 string is CR/H:2/LWAL/RES, which indicates a 
two-storey reinforced concrete residential building with a wall lateral load-resisting system. Level 2 information could include data on 
the material technology, for instance, which may be cast in place (CR + CIP) in the above example. A Level 3 string could include 
secondary information related to primary (Level 2) structural irregularities, such as the presence of torsion eccentricity and a re- 
entrant corner for the above example (IRIR + IRPP:TOR + IRPS:REC). Extensive documentation for each asset class is provided at 
docs.riskdatalibrary.org/ged4all.html (last accessed June 2022). In addition, this webpage indicates that an automatic tool to convert 
a set of attributes into a single taxonomy string, similar to “TaxtWeb” (platform.openquake.org/taxtweb, related to the GEM2.0 
taxonomy, last accessed June 2022), is under preparation. 

The GED4ALL attributes are mapped to the keys (or tags) in the OpenStreetMap database, a large open-source mapping repository 
(openstreetmap.org, last accessed June 2022). Thus, it is possible to derive GED4ALL taxonomy strings for exposure data using the 
export tool developed by the Humanitarian OpenStreetMap Team (export.hotosm.org, last accessed June 2022). Finally, the GED4ALL 
repository (github.com/gem/ged4all, last accessed June 2022) includes software for converting taxonomy strings to the natural 
hazard risk markup language (NRML), enabling compatibility with other exposure taxonomies/models. This can be done using the 
input preparation tool by GEM (platform.openquake.org/ipt, last accessed June 2022). 

3.2. Screening phase: selecting candidate physical impact models 

This step of the procedure involves identifying a list of candidate physical impact models among a given set of seed options. The 
ideal resource for performing this task would be an extensive database of single-hazard and interacting multi-hazard physical impact 
models that account for multiple asset typologies consistent with the GED4ALL taxonomy. This type of database should include a 
search engine actioned by the GED4ALL taxonomy string and should be constantly and systematically updated with relevant ad
vancements in the literature. Although this type of resource is not yet available, related research efforts are ongoing, particularly 
around storing relevant attributes (e.g., analytical vs numerical vs empirical) of physical impact models (e.g. [124], for earthquake 
fragility and vulnerability; [125], for flood vulnerability), or producing harmonised data schemas that improve data interoperability 
within the different modules of a risk model (e.g., [126]). 

This screening phase of the procedure involves:  

1) Defining three fundamental parameters: asset location, asset taxonomy string, and considered hazards. To maximise the model 
search results, these parameters should be defined with different levels of refinement. For example, “location” may be defined as 
“Kathmandu”, “Nepal”, or “Asia”; “taxonomy string” may be defined using only level-one GED4ALL attributes, or level-one and two 
attributes combined, or also level-three attributes; “hazards” may be considered singularly, in relevant pairs or in relevant triplets, 
etc.;  

2) Performing an automatic search in any available interactive database of physical impact models (with examples discussed below; 
and the ideal version of this database described above). This should be performed multiple times for any combination of refinement 
in the above three parameters, starting from their most-refined definitions. Each match encountered during these searches con
stitutes a candidate model;  

3) Performing a manual search in any non-interactive available model compendium, literature review study, and regional/global 
models (with examples discussed below), as per point 1. Any match should be added to the candidate model list; 

Table 1 
GED4ALL attributes for buildings exposed to different hazards. OSM: OpenSteetMap; R: required; O: optional; EQ: earthquake; FL: flood; DF: debris flow; TS: tsunami; 
LA: landslide; FI: Fire; WI: wind; VA: volcanic ash.  

Attribute OSM Key EQ FL DF TS LA FI WI VA 

Direction building:direction O O O O O – O – 
Material of LLRS building:lateral:material R R R R R O R R 
Lateral Load Resisting System (LLRS) building:lateral:system R R R R R O R R 
Height building:levels R R R R R R R R 
Date of construction or retrofit building:age R O O R R O R R 
Surroundings building:adjacency O O O O – O – – 
Occupancy building R R R R R R R R 
Shape of building plan building:shape O O O O O R R – 
Structural irregularity building:irregularity O O O O O – – O 
Ground floor hydrodynamics ground_floor – – O O – – – – 
Exterior walls building:material O O O O – O O – 
Roof shape roof:shape – – – – – O R R 
Floor system material floor:material O O O O O O O O 
Foundation building:foundation O O O O O – O – 
Fire protection building:fireproof – – – – – R – –  
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4) Performing a specific literature review for the most-refined definition of the three fundamental parameters that also accounts for 
specific user requirements (e.g., time-dependent models accounting for material ageing, specific IMs). This step maximises the 
specificity of the matching models, whereas steps (2) and (3) maximise the number of matches;  

5) Screen the candidate models to determine a subset to be scored/ranked for quality in the subsequent phase. When screening, users 
should consider the possibility of developing ad-hoc adjustments to improve any given model. An example is to provide a modi
fication coefficient to allow a physical impact model to consider an extra exposure parameter as an input (e.g., a height-dependent 
modifier to a model not accounting for building height, Section 4.4). The screening process is carried out according to three criteria: 
appropriateness of the damage scale (for fragility models) or the impact metric (for vulnerability and damage-to-impact models) 
concerning the considered application; the amount of extrapolation required to adopt a given model for the considered application; 
and the available documentation for a given model. The last criterion directly relates to the model scoring phase in the next step of 
the proposed procedure, which should avoid excessive guessing. Table 3 provides a set of example qualitative acceptance (i.e., 
screening) thresholds for the three criteria above, which can be modified appropriately according to user judgement for a 
considered application. 

3.2.1. Available interactive databases of candidate models 
GEM provides an online tool (platform.openquake.org/vulnerability/list, last accessed June 2022) for mapping a GEM2.0 building 

taxonomy string to different candidate empirical or synthetic physical impact (or structural capacity curve) models for earthquakes 
[127]. Each model in the database is associated with a scientific publication and is classified according to geographical applicability, 
model typology (synthetic or empirical), adopted IM, etc. The tool also allows users to add more models to the database. A similar tool 
(vulncurves.eu-risk.eucentre.it, last accessed June 2022) related to physical earthquake vulnerability modelling (empirical or syn
thetic) of the European Seismic Risk Model, (ESRM20, [128]) matches GEM3.1 building taxonomy strings to relevant physical impact 
models (and capacity curves) for European building classes. Stefanoiu et al. [129] provide an online database (thebridgedatabase.com/ 
existing-fragility-curves/, last accessed June 2022) of earthquake fragility relationships (mainly synthetic) for bridges that can be 
augmented with user input. Each bridge class is defined using an ad-hoc taxonomy. Each model is classified according to the model 
type (synthetic or empirical), adopted IM, DS thresholds, etc., and is associated with a scientific publication. 

Alam et al. [130] introduce the Cascadia lifelines program (CLiP) fragility function online database (clip.engr.oregonstate.edu, last 
accessed June 2022), which involves earthquake and tornado fragility relationships (empirical and synthetic) for a large set of lifeline 
assets within electric, water, wastewater, and transportation systems. Each model is classified similarly to that for the abovementioned 
databases, although CLiP adopts ad-hoc taxonomy strings. The fragility function manager [131] of the SYNER-G project (Systemic 
Seismic Vulnerability and Risk Analysis for Buildings, Lifeline Networks and Infrastructures Safety Gain, [132]) is an MS 
Windows-based application for storing, visualising and managing earthquake fragility relationships (both empirical and synthetic). 
The database classifies assets based on the SYNER-G taxonomy (largely consistent with that of GED4ALL). It includes models for 
buildings, bridges, road infrastructure, oil and gas systems, and lifelines, including electric, water, and wastewater. To the best of the 
authors’ knowledge, this is the only interactive database that includes time-dependent models for the corrosion-related ageing of 
bridges. The vulnerability module of the CAPRA (Central American Probabilistic Risk Assessment platform, [133]) software is an MS 
Windows-based application to create, visualize and compare new and existing multi-hazard vulnerability functions, expressed in terms 
of economic or human loss. The software uses a simple analytical methodology to obtain new vulnerability functions based on a few 

Table 2 
GED4ALL attributes for bridges exposed to different hazards. Notation as per Table 1.  

Attribute OSM Key EQ FL DF TS LA FI WI VA 

General material bridge:material R R R R R R R R 
Super structure bridge:structure R R R R R R R R 
Deck characteristics bridge:width; length; height R R R R R R R R 
Deck structural system bridge:support O O O O O O O O 
Pier to deck connection pier:connection R O O R R O R R 
Pier to superstructure connection pier:superstructure O O O O O O O O 
Number of piers bridge:total_piers R R R R R R R R 
Shape of pier section pier:shape O O O O O – R – 
Pier height pier:height O O O O O – – O 
Spans pier:span R R R R R R R R 
Connections to the abutments Abutment:connection R R R R R O R O 
Bridge configuration bridge:configuration O O O O O O O O 
Level of seismicity bridge:seismicity O – – – – – – –  

Table 3 
Model screening criteria: minimum thresholds for acceptance [Nds , Rim, Nhp are defined by the user; example values: Nds = 1, Rim = 20, Nhp = 80].  

Screening criterion Suggested acceptance threshold 

Damage/impact appropriateness Required DSs are defined (or Nds DSs are missing). Required impact metric is modelled. 
Required extrapolation Required IM range is covered (or Rim% extrapolation needed) 
Documentation Documentation justifies Nhp% of the model’s assumptions (e.g., damage scale, IM selection, fitting methods)  

R. Gentile et al.                                                                                                                                                                                                         

https://platform.openquake.org/vulnerability/list
https://vulncurves.eu-risk.eucentre.it/
https://thebridgedatabase.com/existing-fragility-curves/
https://thebridgedatabase.com/existing-fragility-curves/
https://clip.engr.oregonstate.edu


International Journal of Disaster Risk Reduction 82 (2022) 103365

11

parameters. The software involves vulnerability functions for multiple hazards and assets classified according to an ad-hoc exposure 
taxonomy model. 

The flood damage model repository ([134], github.com/mattrighetti/fdm-repository-backend, last accessed June 2022) provides a 
collection of 42 empirical flood physical impact models related to residential, commercial and industrial buildings, agricultural land, 
and transport infrastructure. Although the asset classes in the database are not associated with any specific exposure taxonomy strings, 
the considered models are classified according to different parameters, including their geographical applicability, flood type, model 
type (e.g., synthetic or empirical), and the adopted IM. The tool by RiskChanges (riskchanges.org/app//#/datamanagement/ 
vulnerability, last accessed June 2022) comprises empirical and synthetic vulnerability relationships for multiple hazards and 
different asset types. This open database incorporates different single-hazard models (e.g., wind, drought, fire, technological, earth
quake, volcano), allowing users to input new models. To the best of the authors’ knowledge, this is the only interactive tool collecting 
models for different asset typologies and different hazards. This database adopts an ad-hoc exposure taxonomy string and only includes 
a small number of models. Moreover, this database does not include multi-hazard fragility/vulnerability models. 

3.2.2. Available non-interactive databases and model compendia 
A short, non-exhaustive collection of physical impact model compendia and global models is herein provided. Rossetto et al. [135, 

136] provide a compendium of empirical earthquake fragility and vulnerability relationships for different building classes worldwide 
(last updated April 2014; available at ucl.ac.uk/epicentre/resources/gem-vulnerability-databases, last accessed June 2022). Calvi 

Table 4 
Model scoring system: definition of scores for each attribute. [ATT, OBS1, OBS2, OBS3, bins1, bins2, obs1 are defined by the user; example values: ATT = 4, OBS1 = 20, 
OBS2 = 200, OBS3 = 20, bins1 = 5, bins2 = 10, obs1 = 20]. Emp: empirical; Synt: synthetic.  

Criterion: Attribute Score Description 

Relevance: High Model defined for the required city (e.g., Kathmandu) 
Geographical area Med Model defined for the required country (e.g., Nepal) 

Low Model defined for the required region (e.g., South Asia) 
Relevance: High Model matching structural detailing, geometry, and materials parameters appropriate for the asset class 
Asset characteristics Med Geometry and materials parameters appropriate for the asset class, structural details inappropriate or unavailable 

Low Materials params. appropriate for the asset class, geometry and structural details inappropriate or unavailable 
Relevance: High Adopted IM(s) clearly sufficient/efficient for the required application 
IM Med – 

Low Adopted IM(s) clearly not sufficient/efficient for the required application    

Statistical refinement: High Appropriate assumptions. Goodness of fit demonstrated. Aleatory (and possibly epistemic) unc. considered 
Uncertainties Med Appropriate assumptions. Inappropriate aleatory unc. considered 

Low Inappropriate assumptions (e.g., unsound statistical distributions) 
Statistical refinement: High Physically sound models (e.g., fragility curves for different DSs not crossing; reasonable maximum) 
First principles Med Minor first-principle issues (e.g., fragility curves for different DSs cross outside required IM range)  

Low Relationships not physically sound (e.g., fragility curves for different DSs cross)    

Model quality (emp.): High Damage scales/impact measures clearly defined. Negligible non-sampling errors (see Section 3.4) 
Impact observations Med Damage scales/impact measures clearly defined. Non-sampling errors treated with unchecked assumptions 

Low Damage scales/impact measures ambiguously defined (e.g., two assessors may assign different DSs for the same situation). Non- 
sampling errors not reduced 

Model quality (emp.): High IM data directly measured or estimated accurately. IM data predicted-vs-true error investigated 
IM observations Med –  

Low IM data directly measured or estimated inaccurately. IM data predicted-vs-true error not investigated 
Model quality (emp.): High Empirical dataset filtered using asset class definition according to GED4ALL, or with similar attributes 
Constrained asset 

class 
Med Asset class defined as per “High”, but some aggregated attributes (e.g., different heights considered together) 
Low Asset class defined with less than ATT attributes 

Model quality (emp.): High Continuous functions: more than OBS2 observations; min bins2 IM bins; min obs2 observations per IM bin 
Data quantity  Discrete functions: more than OBS2 observations; min obs2 observations per IM bin 

Med Continuous functions: between OBS1 and OBS2 observations; between bins1 and bins2 IM bins; min obs2 observations per IM bin. 
Discrete functions: min obs1 observations per IM bin 

Low Continuous functions: less than OBS1 observations; less than bins1 IM bins 
Discrete functions: less than OBS3 observations    

Model quality (synt.): High State-of-the-art. All relevant damage mechanisms/impact sources considered. Sound parameter characterisation 
Fidelity to mechanics Med Minor simplifications of relevant mechanics (e.g., less-relevant damage mechanisms/impact sources neglected). Sound 

parameter characterisation 
Low Major simplifications of relevant mechanics (e.g., fundamental damage mechanisms/impact sources neglected). Unsound 

parameter characterisation (e.g., excessive strength assumed for a key structural member) 
Model quality (synt.): High Calibrated using component-by-component analysis. Each component modelled explicitly 
Aggregation level Med Calibrated using subcomponent analysis (e.g., aggregating components at the same building storey) 

Low Asset-level model. Aggregating all sources of damage or impact    

User-specific 
requirements 

High Model exactly reflects all the user requirements 
Med Model not complying with minor user requirements (e.g., required time dependency not covered) 
Low Model not complying with major user requirements (e.g., required state dependency not covered)  
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et al. [136] provides a review of nearly 100 synthetic and empirical earthquake fragility/vulnerability models developed over three 
decades. The European tsunami risk service provides a compendium of synthetic and empirical fragility curves for buildings subjected 
to tsunamis (github.com/eurotsunamirisk/etris_data_and_data_products, last accessed June 2022). 

Regional- or global-level models provide consistent results across different asset classes, which is particularly desirable within risk 
models and could be considered within the proposed procedure. Moreover, these models will likely produce matches within the 
proposed screeing procedure. A non-exhaustive list of these models is provided herein. For instance, Martins and Silva [43] provide an 
analytical earthquake fragility and vulnerability model covering the most common building classes at a global scale. Among many 
others, some studies provide physical earthquake impact models for asset classes in Iran [137], northeast India [138], Peru [139], 
China [140], and Pakistan [141]. The Joint Research Centre (JRC) of the European Commission produced a comprehensive global 
model of empirical flood depth-damage vulnerability functions for a variety of assets [142]. The functions are available in a tabular 
dataset at publications.jrc.ec.europa.eu/repository/handle/JRC105688 (last accessed June 2022). The JRC functions were developed 
empirically using data from different continents (i.e., Europe, Asia, Africa) and considered residential, commercial and industrial 
occupancies. These functions can be readily adapted to provide local and regional loss estimations (e.g., [143]). The HAZUS 
depth-damage regional vulnerability functions are accessible in an online package (CRAN.R-project.org/package=hazus, last accessed 
June 2022). 

3.3. Scoring phase: selection of the most suitable models 

For a given asset class, selecting the most suitable candidate model(s) is ultimately a subjective decision of the user. Nonetheless, 
the selection process can be supported by a rational-yet-qualitative model scoring system based on key attributes related to the 
suitability of a given model for a given application. 

This step of the proposed procedure enhances and combines different existing model scoring methods for single-hazard conditions 
and/or a single model typology. These methods provide criteria to evaluate the quality of asset-level physical impact models and are 
mainly focused on earthquakes. Porter [144] proposes a scoring system for analytical or empirical earthquake fragility models based 
on five criteria (data quality, relevance, rationality, documentation, and overall quality) and four scoring levels (superior, average, 
marginal, or not applicable). Meslem et al. [145] refined the previous scoring system for analytical earthquake fragility models. 
Rossetto et al. [146] further generalised the approach by Meslem et al. for analytical and empirical earthquake fragility and 
vulnerability models. The resulting scoring system is based on ten criteria grouped into four categories: data quality, representa
tiveness of a specific class, rationality (e.g., obeying first principles), and documentation quality. Finally, Alam et al. [130] provide a 
two-step scoring system for earthquake and tornado fragility models of lifeline infrastructure. Based on a set of 16 criteria (related to 
regional applicability, IM, structural class, damage characterisation, data quality, analysis model and method, fragility derivation), the 
system involves 1) elicitating a group of experts to score each criterion in terms of importance; and 2) aggregating the expert’s re
sponses to assign scores to each criterion. 

Leveraging the above literature, this study proposes a scoring system for multi-hazard physical impact models related to different 
asset types and analysis methods. The adopted criteria are based on those in Rossetto et al. [146] but incorporate the following en
hancements: (1) generalisation for a multi-hazard scope; (2) removal of criteria already considered in the screening phase (e.g., 
documentation); (3) addition of some bespoke criteria (details to follow); and (4) grouping of criteria to facilitate the final scoring part 
of the proposed procedure. Given a set of candidate physical impact models, the scoring phase of the proposed procedure involves:  

1) Scoring each candidate model against four suggested criteria: relevance, statistical refinement, model quality (defined differently 
for empirical or synthetic models), and user-defined requirements. Each criterion involves one or more attributes, which should be 
qualitatively scored “high”, “medium”, or “low” according to the scheme described in Table 4. The “relevance” criterion involves 
the “geographical area” attribute, which captures the representativeness of a given model for a given area, “asset characteristics”, 
which considers how the parameters of the asset’s structural details, materials, and geometry within the model reflect those 
required for the considered asset class, and “IM”, which is related to the sufficiency and efficiency of the adopted IM(s). The 
“statistical refinement” criterion involves the “uncertainties” attribute, related to the refinement of the treatment of uncertainty for 
a given model, and “first principles”, which accounts for any functional inconsistency in the model (e.g., crossing of fragility 
functions for different DSs; unreasonably large/small maximum value of the impact metric of a vulnerability function). For 
empirical models, the “model quality” criterion includes the attributes “impact observations” and “IM observations” that are 
related to the level of error/bias involved in the fitted data, “constrained asset class” that captures how well the fitted data is suited 
to a single asset class, and “data quantity”, which involves the number of IM vs damage/impact observations used to fit the model. 
For synthetic models, this criterion involves “fidelity to mechanics”, which captures how well an analytical/numerical model 
reflects the mechanics of an asset subjected to one or multiple hazards, and “aggregation level”, which reflects the level of so
phistication involved in the model (e.g., asset- vs component-level models). The attribute (and criterion) “user-defined re
quirements” reflects the level of compliance of the selected model with a set of user-defined features (e.g., time/state dependency, 
consistency of model assumptions across different asset classes). Note that although the model typology (e.g., synthetic vs 
empirical) can generally be considered a user-specific requirement, it can also be indirectly related to other requirements (e.g., no 
time-dependent empirical models are available, and therefore a synthetic model must be selected). Any attribute related to IMs 
should be disregarded when scoring damage-to-impact models. This set of criteria and attributes are suggested based on the 
available literature information and engineering judgement of the authors. Consistent with the aim of this selection procedure, 
users are encouraged to add or remove specific criteria/attributes according to their specific needs; 
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2) Each criterion has a prescribed weight. The analytic hierarchy process (AHP; Saaty [147]) is used to produce a mathematically 
consistent definition of the weights, which has already been successfully applied to engineering decision-making problems (e.g., 
[148]). According to this procedure, the user expresses an opinion on every possible pairwise comparison among the criteria. Each 
opinion quantifies how much criterion j is more/less important than criterion k. The results of the comparisons constitute a decision 
matrix. The desired weights are proportional to the first eigenvalue of this matrix. Further details can be found in [147]. The 
suggested weights for the criteria are 25% for “relevance”, 15% for “statistical refinement”, 40% for “model quality”, and 20% for 
“user requirements”. However, users are encouraged to apply AHP for their specific circumstances to derive case-specific weights;  

3) Given the adopted weights, scoring of the available models is carried out according to the technique for order preference by 
similarity to an ideal solution, or TOPSIS [149]. This procedure has been deemed suitable for engineering decision-making 
problems (e.g., [150]). First, the user scores each candidate model against the four criteria (using the qualitative scores “low, 
medium, or high”). The score assigned to a given criterion is the minimum score obtained for all of its attributes (e.g., the minimum 
score among the attributes “fidelity to mechanics”, and “aggregation level” quantify the score of the “model quality” criterion for 
synthetic models. For example, this approach penalises a refined component-by-component numerical model that neglects relevant 
damage mechanisms and/or impact sources). To be used as an input of TOPSIS, these qualitative scores should be expressed as 
numerical values. Alternatively, triangular fuzzy numbers may be used in a qualitative TOPSIS approach [151]. It is herein sug
gested to use 1, 2, and 3, respectively, for low, medium, and high. However, users are encouraged to test the sensitivity of the final 
result to these values and alter them if required. The weighted scores for a given criterion are used to define the ideal best and worst 
models, and the most suitable model maximises a trade-off between the distances from the ideal worst and best models [147]. 

3.4. Development and statistical fitting of physical impact models 

This step of the proposed procedure involves situations in which, because of model availability and the specific minimum re
quirements set by the user, it is impossible to find a suitable physical impact model for a particular asset class of interest at the 
screening phase. In this case, suitable methods can be employed to develop the required model based on existing empirical information 
(i.e., observed damage and/or impact data from past hazard events), synthetic data derived from analytical or numerical models, or 
expert judgement. After collecting or synthetically generating the required data, statistical approaches are used to fit relevant 
mathematical functions (see Section 2.1) to the data. The proposed procedure does not involve scoring the developed physical impact 
models. However, a modelling approach should be selected carefully considering the scoring criteria defined above, emphasising the 
minimum modelling and user-specific requirements. This section mainly focuses on empirically- and synthetically-derived functions, 
with no intention of providing a thorough review of modelling approaches for different assets and hazards. Expert-judgement ap
proaches are briefly discussed at the end. 

3.4.1. Model development 
Empirical physical impact models require collecting data on previous observations of natural-hazard physical impacts. Sources of 

these data include post-event surveys conducted by reconnaissance teams or through remote sensing techniques, tax assessor or in
surance claims data, and experimental testing. Examples of related datasets include: the GEM earthquake consequence database 
(GEMECD, last accessed June 2022), the emergency events database (EM-DAT, last accessed June 2022), the USA National Oceanic 
and Atmospheric Administration (NOAA, last accessed June 2022) database, and earthquake engineering research institute (EERI, last 
accessed June 2022) reconnaissance data. For each asset in a portfolio, the datasets generally include: 1) the IM level (for fragility and 
vulnerability); 2) the DS (for fragility and damage-to-impact) and/or the impact (for vulnerability and damage-to-impact); and 3) 
exposure taxonomy attributes of the assets. Provided enough data is available, empirical models are considered the most credible since 
they are derived based on actual observations. However, the quality of an empirical database may be jeopardised (e.g., [152]) by the 
size and/or statistical representativeness of the sample (i.e., sampling errors). The empirical data need to comprise an unbiased 
(random) collection of observations in each DS (or across all impact values) of interest that are documented using a consistent 
reporting protocol. These data can be affected by various non-sampling errors, which may involve: under-coverage errors; inaccurate 
measurements/estimations of the IM Lallemant et al. [17]; ambiguous definition of DSs; incomplete definition of the asset classes; and 
inexperience of the survey teams. Rossetto et al. [146] describe these error types in the context of earthquake physical impact 
modelling. However, empirical models are derived similarly (and the same related challenges are encountered) for any hazard. 

Synthetic physical impact models are derived from analytical or numerical modelling of the mechanical response of an asset to one 
or more hazards of interest. The mechanical modelling required depends on the type of mechanical response and, therefore, the 
specific asset and hazard of interest. The considered asset class is generally represented by one or more archetype (or index) assets (e. 
g., [153]). These archetypes are characterised in detail by considering the specific geometry (e.g., the height of each pier in a bridge), 
material properties (e.g., steel yield stress), and relevant structural details (e.g., wall-to-roof connection, relevant for wind fragility). A 
synthetic model is then generally used to calculate an EDP for a set of hazard loadings with different IM levels. The selected EDP must 
be representative of the damage levels associated with the considered asset and hazard combination, i.e., it should be possible to 
associate mechanics-based thresholds of the EDP to different DSs. Different combinations of assets and hazards can produce different 
damage mechanisms, which are captured to varying degrees by different EDPs. For example, peak EDPs (e.g., maximum displacement, 
maximum force) tend to be appropriate when the history of the hazard excitation may be disregarded (e.g., single earthquakes, 
tsunamis, landslides). Cumulative parameters (e.g., number of vibration cycles, hysteretic dissipated energy) are instead more 
appropriate for capturing progressive damage induced by high-cycle fatigue (e.g., wind-induced vibrations involving a large number of 
low-amplitude cycles; e.g., [154]) or cumulative damage (e.g., earthquake sequences, earthquake-tsunami sequences, affecting the 
asset in a pre-damaged condition; e.g., [155]). Using these EDPs may be challenging in practice due to the unavailability of 
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corresponding DS scales (e.g., an earthquake damage scale based on deformation is readily available, while obtaining an energy-based 
one requires further modelling [155]). For each considered level of IM, the user identifies a set of hazard records to which the asset is 
subjected (e.g., ground-acceleration time series for earthquakes, velocity and depth time series for tsunami or landslides, wind speed 
time series), calculates the EDP and estimates the associated DS. 

Synthetic models can be used to develop impact data for vulnerability fitting by combining asset-level fragility functions fit using 
synthetic damage data (see below) with empirical damage-to-impact models (Section 2.1). More refined approaches (e.g., FEMA P58 
for earthquakes [156]) combine synthetic analysis response results with pre-determined component-level fragility and vulnerability 
relationships to produce asset-level vulnerability models. For some hazards, it is not yet possible to model the response and damage 
physics of each asset component, which means that it is not reasonably simple to estimate EDP values or EDP thresholds that can be 
linked to different DSs (i.e., EDP-DS relationships). For instance, in the case of floods, different asset components (e.g., a carpet versus 
industrial machinery) show remarkably different damage mechanisms for a given combination of water depth and flood duration (e.g., 
carpet damage is related to chemical processes, whereas industrial machinery damage is related to electric/electronic processes), 
which makes it challenging to define EDP-DS relationships on a component-by-component basis. Nofal and van de Lindt [157] have 
recently overcome this challenge using empirical data (water depth, flood duration, economic impact) to define component-level DSs 
by identifying their flood depth and duration resistance for different DSs (expressed as ranges of economic loss). They then follow a 
simulation-based approach to develop component-based fragility and vulnerability curves (surfaces), which are subsequently con
verted to building fragility and vulnerability curves (surfaces). 

Expert-judgement-based functions are used in the absence of observed data from past events and/or a combination of computa
tional resources and modelling skills for conducting relevant numerical analyses. These functions can be derived, for instance, using 
the Delphi Process [158], which requires several experts to provide educated guesses of the damage (or loss) that would occur to a 
specific asset class when subjected to a prescribed magnitude of a hazard IM. The judgement can then be weighted according to the 
expert’s experience level to produce a physical impact model. This process requires thoughtful vetting of the participants. It will most 
likely lead to an underestimation of uncertainty, given the well-known tendency of experts to have overconfidence in their opinions 
([152,159], sloanreview.mit.edu/article/managing-overconfidence). The subjectivity of the weightings can also amplify inaccuracies 
in the models obtained. Due to the above issues, this approach to fitting physical impact models is not recommended for use within the 
proposed procedure and is not discussed further. 

3.4.2. Model fitting 
For fragility function fitting, the underlying empirical or synthetic data can be expressed in two different formats, which are 

broadly classified as “actual” or “bounded” [160]. “Actual” data refers to cases in which an asset has actually reached (or exceeded) the 
DS of interest at a known value of hazard IM, and are analogous to the results obtained in an incremental dynamic analysis that is used 
to determine a structure’s earthquake collapse capacity [161]. “Bounded” data refers to cases in which only the largest value of hazard 
intensity reached is known and whether or not the DS of interest was exceeded at (or below) that intensity level, and are comparable to 
the results obtained using a multiple stripes approach for determining earthquake collapse capacity [161]. On the other hand, 
empirical or analytically-derived consequence data for vulnerability function and probabilistic damage-to-impact model fitting is 
continuous (by definition). Across all three data contexts, function fitting can be achieved through a maximum likelihood approach, 
which - given a prescribed functional form (see Section 2.1) that can be multivariate in the case of vector-valued impact models [72] - 
computes the corresponding parameters of the model with the highest likelihood of producing the data that were observed. 
Goodness-of-fit measures (e.g., minimum Akaike information criterion, cross-validation; see [17]) can then be employed to distinguish 
the best model for the underlying data if several functional forms are available for consideration. 

For synthetic derivations of fragility functions, it may be important to consider how the structural response analysis is carried out. 
For instance, it has been demonstrated [161] that analysing the earthquake collapse probabilities of structures using the multiple 
stripes approach [162] produces more efficient (site-agnostic) fragility models than those obtained from incremental dynamic analysis 
[163]. Furthermore, the choice of IMs used in the fragility function is crucial. For instance, Kohrangi et al. [164] found that an IM 
consisting of a geometric mean of multiple spectral accelerations is relatively more sufficient and produces significantly more efficient 
earthquake fragility functions than a single-period first-mode spectral acceleration value. A more detailed discussion on challenges and 
issues to consider with synthetic fragility/vulnerability modelling can be found in Silva et al. [41], which specifically refers to 
earthquakes but is broadly applicable across any hazard context. Empirical data collection challenges and related errors can negatively 
affect the derivation of empirical physical impact models, for example leading to biased fitting (e.g., [17,152]). 

4. Illustrative application: Tomorrowville 

4.1. Description of the case study 

The proposed methodology to score, select, and develop multi-hazard physical impact models is applied to the virtual urban testbed 
“Tomorrowville”. This synthetic urban area is explicitly designed as a testbed for the TCDSE [5] of the Tomorrow’s Cities research 
programme. Although created fictitiously, Tomorrowville was developed using a digital elevation model of a real location consisting of 
a 500ha area south of Kathmandu (Nepal). Tomorrowville reflects the typical demographic, socioeconomic and physical features of 
urban landscapes in the Global South, particularly those of Kathmandu and Nairobi (Kenya). This virtual testbed area is susceptible to 
earthquakes, floods, and debris flows [12]. 

Tomorrowville is underpinned by a relational database of spatially-distributed information on its urban features, which is 
implemented in a GIS environment. The database – described in detail in Mentese et al. [10] – includes land-use polygon information, 
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building (physical) attributes, household (social) attributes, and individual/person (social) attributes (note that infrastructure infor
mation is yet to be considered). The adopted physical impact models are assigned to buildings in the Tomorrowville GIS database 
through developed taxonomy strings, which are stored as attributes in the building layer. In addition, a physical impact table, 
including the numerical definition of the physical impact model (earthquakes, floods, and debris flows) corresponding to each tax
onomy string, is provided in a separate file (“vulnerabilityInventory”). These data are publicly available [10]. 

Various building layouts have been created for Tomorrowville to explore the risk implications of different urban development 
options (conditional urban plans) in the context of the TCDSE. These cases are shown in Fig. 4, together with the underlying land-use 
polygons. The first scenario (TV0_b0) refers to the present-day configuration of Tomorrowville. The TV50_total scenario is also 
considered, representing one possible configuration of Tomorrowville 50 years in the future and including TV0_b0. A detailed 
description of the exposure layers in Tomorrowville is considered out of the scope of this paper (but available in Mentese et al. [10]), 
which will only discuss the definition of the building classes related to physical impact characterisation. 

4.2. Exposure characterisation (preliminary phase of the procedure) 

TV0_b0 contains 4810 buildings (stored in the layer “buildingsTV0”). The building attributes are generated algorithmically to be 
consistent with relevant statistical distributions of Nairobi and Kathmandu building data [10]. However, the lack of detailed data 
available for this case study means that it is only possible to characterise a subset of the GED4ALL attributes affecting physical impact 
modelling for the considered hazards (see Table 1): occupancy type, building material, lateral resisting system, height and code level. 
Each combination of occupancy type, building material, lateral resisting system, height and code level constitutes a building class 
within Tomorrowville, which is mapped to a set of relevant physical impact models related to earthquakes, floods, and debris flows 
using GED4ALL taxonomy strings. Ad-hoc simplified taxonomy strings are also defined to simplify communication among stakeholders 
and researchers of different backgrounds during the interdisciplinary data-generation process for Tomorrowville. 

As discussed in the previous sections, different attributes are relevant for physical impact models of different hazards. Table 5 
shows the values adopted for the different taxonomy attributes, including their labelling according to both GED4ALL and the simplified 
ad-hoc taxonomy strings. Note that the simplified taxonomy strings are discussed herein for simplicity. 

Ordinary buildings in Tomorrowville are generally classified as residential (Res), commercial (Com), or industrial (Ind). Schools 
and hospitals also feature in Tomorrowville. For this application, the occupancy type only affects the flood and debris flow vulner
ability models, together with the construction material and the number of storeys. 

The possible combinations of building material and lateral load resisting system parameters within Tomorrowville are adobe wall 
buildings (Adb), informal settlements in stone and mud (StMin), brick and mud wall buildings (BrM), brick and cement walls with 
flexible floor slabs (BrCfl), brick and cement walls with rigid floor slabs (BrCri) and masonry-infilled reinforced concrete frames (RCi). 
The StMin buildings can be either one- or two-storey tall, while the Adb, BrM, BrCi, BrCfl buildings can reach up to four storeys. 

Fig. 4. Tomorrowville: a) land-use polygons (adapted from Mentese et al. [10]); b) TV50_total.  
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Finally, the height of the RCi buildings ranges between one and eight storeys. Considering the physical impact models used for this 
application (see Section 4.4), the material affects earthquake, flood and debris flow models while the lateral resisting system affects 
earthquake models only. 

Building design codes associated with building classes in Tomorrowville (which only affect earthquake physical impact models in 
this case) are defined based on the evolution of seismic design codes in Nepal: low-code (LC) buildings are designed without any 
seismic code provisions; moderate-code (MC) buildings refer to construction practices in the period 1994–2015, and are therefore 
assumed to be compliant with the NBC1994 code (Nepal national building code, [165]); high-code (HC) buildings are assumed to be 
compliant with the NBC2015 code [165], and designed with higher risk awareness of the designers after the 2015 earthquake in Nepal. 
RCi buildings can be assigned any of the above codes, while all other building types are low code due to poor code compliance that is 
assumed to be prevalent in the considered case-study area. Each land-use polygon within the TV0_b0 scenario is associated with a 
specific distribution of the above parameters (see Mentese et al. [10] for details). The occupancy type of buildings in each polygon 
(Fig. 5a) depends on the underlying land use (e.g., residential, commercial, etc.). Fig. 5b displays the material and lateral resisting 
system combination for each building. Reinforced concrete frames with masonry infills (RCi) constitute approximately 62% of the 
buildings within the “commercial and residential”, “industrial”, “city centre”, and “high income” land-use polygons, and approxi
mately 40% of buildings within the “historical preservation” and the “middle income” polygons. BrM is predominant (i.e., represents 
66% of buildings) in the “agriculture” and “low-income” polygons. Proportions of other combinations of material and lateral resisting 
systems are approximately uniform across all polygon types, ranging from 1% to 7%. As seen in Fig. 5c, most buildings in TV0_b0 are 
low rise (i.e., LR, between one and four storeys), and less than 20% of all reinforced concrete buildings are mid-rise (i.e., MR, between 
five and seven storeys). Finally, the proportion of different code design levels (Fig. 5d) depends on the polygon type. Notably, 70% of 
RCi buildings are low code in the low-income polygons, 60% are moderate code in middle-income polygons, and 70% are high code in 
high-income polygons. 

4.3. Modelling choices and user requirements for the procedure 

The selected hazards for Tomorrowville are earthquakes, floods, and debris flows. For the specific application of the TCDSE to 
Tomorrowille and the particular “physical infrastructure impact” module of the TCDSE related to this work, fragility models are 
generally preferred – whenever available – over vulnerability models, since estimating damage enables greater flexibility in subse
quently characterising a wide array of impact metrics (e.g., casualties, human displacement) that may also draw on social information 
as part of the ensuing “social impact” module. 

Kathmandu is the considered location when applying the proposed procedure since the physical geographical representation of 
Tomorrowville (including a digital elevation model) was derived from the Kathmandu Valley. For this specific case study area, it is 
reasonably assumed that flood physical impact models can also capture debris-flow impacts; the low flow velocities and sediment 
concentration of debris flows within the shallow topography of building locations on the valley floor means that damage is principally 
caused by inundation, rather than hydrodynamic stress and impacts from debris [12]. Moreover, since the damage mechanism due to 
earthquakes (mainly displacement-related damage) is unrelated to the damage due to floods/debris flows, the physical impact models 
of the building classes in Tomorrowville are considered independent, such that no multi-hazard fragility interaction is considered. 
Time-dependent physical impact is also not explicitly considered for simplicity. However, it can be approximately facilitated by scaling 
the parameters of the adopted physical impact models (e.g., [3]) using properly-calibrated factors (e.g., reducing the medians of a set 
of fragility functions). 

The most important user-specific model requirement for this application involves prioritising sets of asset class-specific models (e. 
g., explicitly capturing the plastic mechanisms of a class) that are derived using consistent assumptions and modelling techniques and 
that can cover multiple asset classes within Tomorrowville. Selecting consistently-derived models maximises the consistency of the 
damage estimations within the risk model. Models using advanced IMs are also preferred over models adopting more-conventional 
IMs. 

Finally, the adopted weights for TOPSIS are respectively equal to 25%, 15%, 40%, and 20% for the relevance, statistical refinement, 
model quality, and user requirements criteria respectively. The numerical values assigned to the low, medium, and high scores for the 

Table 5 
Adopted exposure taxonomy attributes, considering the GED4ALL and the simplified ad-hoc taxonomies.  

Attributes Values Label (simplified taxonomy) Label (GED4ALL taxonomy) 

Occupancy Residential Res RES 
Commercial Com COM 
Industrial Ind IND 

Material + Adobe walls Adb MUR+ADO/LWAL 
lateral resisting system Stone and mud (informal settlements) StMin MUR+ST+MOM/LWAL 

Brick and mud walls BrM MUR+CL+MOM/LWAL 
Brick and cement walls with flexible floor slabs BrCfl MUR+CLBRS+MOC/LWAL/–FWCN 
Brick and cement walls with rigid floor slabs BrCri MUR+CLBRS+MOC/LWAL/–FWCN 
Masonry-infilled reinforced concrete frames RCi CR + CIP/LFINF 

Date of construction Pre 1994 (Low code) LC YPRE:1994 (and LFINF+CDL) 
(proxy for code level) Between 1994 and 2015 MC YBET:1994:2015 (and LFINF+CDM)  

After 2015 HC YBET:2016:2022 (and LFINF+CDH) 
Height 1-8 storeys 1s–8s H:1-H:8  
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Fig. 5. Building-class attributes of the TV50_total scenario in Tomorroville: a) occupancy type; b) material and lateral resisting system; c) height; d) code level.  
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criteria are, 1, 2, and 3 respectively. This specific implementation of TOPSIS is available at github.com/robgen/ 
rankFragilityVulnerability (last accessed June 2022). 

4.4. Selected physical impact models 

This section provides an overview of the selected physical impact models for all building classes within Tomorrowville. The 
proposed procedure is described in detail for an example building class (summarised in Table 6 and Fig. 6), namely RCi+MC+6s+Res 
in the simplified taxonomy and CR + CIP/LFINF+CDM/H:6/YBET:1994:2015 according to GED4ALL. Among the available databases 
mentioned in Section 3.2.1 (point 2 of the screening phase) for earthquakes, the GEM vulnerability and the European seismic risk 
model databases only produced three candidate models: Akkar et al. [166], Erberik [167], and CR_LFINF_CDM-0_H6 in Crowley et al. 
[128]. The first two models are based on a numerical approach involving single degree of freedom representation of the structures and 
refer to residential reinforced concrete buildings in Turkey, which are broadly classified as “Asia” models within the GEM database. 
The third model is based on a similar methodology and refers to residential masonry-infilled concrete frame European buildings with 
moderate code provisions. 

Among the model compendia mentioned in Section 3.2.2 (point 3 of the screening procedure) for earthquakes, Rossetto et al. [135] 
produced the same candidate models as the GEM interactive database, while Calvi et al. [136] produced no matches. The HAZUS 
earthquake fragility model for mid-rise, moderate code reinforced concrete frames is a further match produced in this procedure step. 
Even though it refers explicitly to USA building classes, it is considered because it is commonly used for other regions. Moreover, as 
demonstrated elsewhere (e.g., [171,172]), mapping the seismic design codes of Global South countries against the historical evolution 
of USA design codes is fairly straightforward. A literature review specifically tailored to Nepali building classes (point 4 of the 
screening procedure) returned the model by Gautam et al. [168] as an output. This empirical model is derived from a large dataset of 
IM vs damage compiled in the aftermath of five major Nepali earthquakes. The literature review was continued by relaxing the 
constraint on the geographical location (i.e., targeting generic reinforced concrete building classes) but including some specific model 
requirements (used as a criterion in the scoring phase), particularly the explicit consideration of the building plastic mechanism 
(indirectly related to the level of seismic code), and the use of advanced IMs. The result of this search is the study by Gentile and 
Galasso [169], which provides fragility models for generic masonry-infilled reinforced concrete frames for relevant combinations of 
height and plastic mechanisms specifically tailored to different design code levels. The Gentile and Galasso models cover all the 
relevant concrete building classes in Tomorrowville. This means that multiple building classes are associated with models generated 
from the same methodology and assumptions, maximising the consistency of the damage estimations in the risk model as far as 
possible (which is one specific model requirement for this application). Finally, these models adopt the geometric mean of the spectral 
acceleration across a range of periods, which is an advanced IM. 

All the identified earthquake candidate models passed point 5 of the screening phase since they include adequate documentation 
(associated with international journal papers), an adequate damage scale covering four DSs, and require no IM extrapolation for their 
specific use in Tomorrowville. The candidate models are then scored against the scoring criteria, as shown in Table 6. Although scoring 
only “medium” for “relevance”, the model by Gentile and Galasso, shown in Fig. 6a, was selected since it scored “high” in all other 
criteria, finally resulting in a higher overall score according to TOPSIS (Table 6). 

Table 6 
Model scoring for the CR+CIP/LFINF+CDM/H:6/YBET:1994:2015 (RCi+MC+6s+Res) building class. The score for each criterion is underlined.  

Criterion: Attribute Models for earthquake Models for flood and debris flow  

[166] [167] [128] [27] [168] [169] [142] [27] [170]           

Relevance: 
Geographical area Low Low Low Low High Med Med Low Low 
Asset characteristics Med Med Med Low Med High Med Med Med 
IM Med Med Med Low Med High High High High  

Statistical refinement: 
Uncertainties Med Med Med Med Med High Med Med Med 
First principles High High High High High High High High High  

Model quality (empirical): 
Impact observations – – – – – – Med Med Med 
IM observations – – – – – – High High High 
Constrained asset class – – – – – – Med Med Low 
Data quantity – – – – – – High High Med  

Model quality (synthetic): 
Fidelity to mechanics Med Med Med Med Med High – – – 
Aggregation level Med Med Med Med High High – – –           

User requirements Med Med Med Med Med High Low Low Low           

TOPSIS score 0 0 0 0 0.55 0.66 1 0.60 0 
Ranking 3 3 3 3 2 1 1 2 3  
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For floods (and debris flows), the only available interactive database to perform a search according to point 2 of the procedure is the 
flood model database (see Section 3.2.1). A search within this database only produces the JRC Asia, Concrete, and Residential 
empirical vulnerability function as a candidate model. The model compendia search supporting point 3 of the procedure results in the 
same model as well as the HAZUS, six-storey, Concrete, Residential model. The JRC vulnerability functions are defined starting from 
the three JRC baseline Asia functions for residential, commercial, and industrial buildings, and then a loss multiplier is applied based 
on construction material (equal to 0.6 for concrete). Note that this model can be consistently applied to all building classes in 
Tomorrowville, which is one of the selected user requirements. A literature review specifically tailored to Nepali building classes did 
not produce any relevant match. For completeness, the empirical model in Tang et al. [170] for Thailand is herein mentioned as the 
country-level model closest to the geographic area relevant for Tomorrowville. According to the above features, the candidate flood 
models are scored against the criteria and ranked according to TOPSIS (Table 6). The JRC model (shown in Fig. 6b) was selected due to 
its higher score in the “relevance” criterion. 

The JRC vulnerability models depend on an assumed total building value. This is set to 1 for each considered building class in 
Tomorrowville to normalise losses, providing a proxy for damage (consistent with the damage output from the implemented earth
quake fragility functions). The JRC vulnerability curves do not vary as a function of building height; therefore, they ranked “medium” 
in the “constrained asset class” attribute. An ad-hoc height modifier is developed in this study to overcome this limitation. This 
modifier is based on the assumption that the JRC functions are valid for buildings of a given reference number of storeys (nref ), which is 
the average number of storeys within the JRC dataset (herein considered equal to 2). This modifier also assumes that the absolute value 
of flood loss for a given building class only depends on the flood depth, L(hw), and is independent of the building height (i.e., the loss 
can only be caused by damaged contents present in inundated storeys). This condition is expressed in Eq. (5), where LR is the loss 
normalised by the total reconstruction cost RC (note that the subscripts “bld” and “ref” respectively refer to a generic and the reference- 
height building). The total reconstruction cost of a building within a given class is assumed to be linearly proportional to the number of 
storeys (RCbld = nbldrc, in which nbld is the number of storeys of the building, and rc is the reconstruction cost of one storey). By 
substituting this last equation into Eq. (5), one can obtain the height-modified normalised loss (Eq. (6)). This calculation is capped at 
LR = 1, whenever appropriate. Fig. 6b shows the height-modified vulnerability curve developed for the RCi+6s+Res class as an 
example. 

Lref(hw)=Lbld(hw)→
yields

LRref(hw)RCref =LRbld(hw)RCbld (5)  

LRbld(hw)=
nref

nbld
LRref(hw) (6) 

After applying the model selection procedure to all the building classes in Tomorrowville, 11 different earthquake fragility models 
are deemed necessary. The fragility models in the study by Guragain [173] calibrated explicitly on Nepalese building classes, are 
selected and applied based on the Adb, BrM, BrCfl, BrCri, StMin components of the taxonomy string. All of these models have been 
derived from the same numerical modelling approach, leading to consistent damage estimations for the underlying building classes 
and ultimately enhanced consistency in the risk model itself. The IM used in these models is either peak ground acceleration (BrM, 
BrCfl, BrCri), or spectral acceleration at the structure’s fundamental period, considered equal to 0.3s (Adb, StMin). The earthquake 
fragility models proposed in Gentile and Galasso [169] are used for all the RCi buildings, and are assigned based on height (LR, MR) 
and code-level (LC, MC, HC) components of the taxonomy string; six different RCi building classes (i.e, combinations of LR/MR and 
LC/MC/HC) are present in the Tomorrowville conditional urban plans. All of the adopted earthquake fragility models are based on 
numerical simulations and use the same DS characterisation, i.e., slight (DS1), moderate (DS2), extensive (DS3), and complete (DS4). 

The JRC model is applied to all the building classes in Tomorroville, considering the “Asia, Res” baseline function. According to the 

Fig. 6. Six-storey masonry-infilled reinforced concrete building (CR+CIP/LFINF+CDM/H:6/YBET:1994:2015 or RCi+MC+6s+Res): a) earthquake fragility functions; 
b) flood/debris flow vulnerability functions. Note that a 6 m flood causes a ~20% loss because it only affects approximately two storeys. 
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JRC guidelines, the maximum damage of the baseline functions is multiplied by factors equal to 0.6 for RCi buildings, 1 for Adb, BrM, 
BrCfl, BrCri buildings, and 0.075 for StMin buildings. The height modifier of Eqs. (5) and (6) is then applied, leading to 48 unique 
flood/debris-flow vulnerability functions across all considered building classes. 

5. Conclusions 

This paper has described a structured methodology for characterising the multi-hazard physical impact modelling of a portfolio of 
assets across an urban system. Given a set of relevant hazards for any selected case-study region, the methodology involves 1) mapping 
the relevant asset classes (i.e. construction types) in a considered area to a set of existing candidate fragility, vulnerability, and/or 
damage-to-impact models, also accounting for any specific modelling requirements (e.g., models with consistent assumptions valid for 
multiple classes, time dependency, multi-hazard interaction); 2) scoring the candidate models according to relevant criteria to select 
the most suitable ones; or 3) using state-of-the-art numerical and/or empirical methods to develop fragility/vulnerability models not 
already available, supplementing existing models. 

The proposed methodology is applied to the virtual testbed “Tomorrowville”, a synthetic-but-realistic urban area specifically 
designed as a testbed for the Tomorrow’s Cities Decision Support Environment. Tomorrowville reflects the typical demographic, 
socioeconomic and physical features of urban landscapes in the Global South and is susceptible to earthquakes, floods, and debris 
flows. 

The main goal of this procedure is to provide a framework that facilitates the consistent selection of a set of candidate physical 
impact models to use within risk modelling applications. This selection is based on a rigorous evaluation that considers criteria related 
to the accuracy, computational complexity, data requirements, and specific user requirements of a risk model. Future repeated ap
plications of the procedure will allow a refinement of the suggested values for all the relevant input parameters (e.g., specific criteria, 
threshold values for screening, scoring schemes, and weights). The proposed methodology facilitates effective characterisation of the 
multi-hazard, time-dependent physical impact modelling of a portfolio of assets, which is particularly useful in future-looking (risk- 
informed urban planning) contexts. 
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