
1.  Introduction
Many earthquake risk-modeling approaches and computational tools for quantifying the consequences of seismic 
events on urban environments (e.g., direct and indirect physical damage, economic and social losses) already exist 
in the literature. For example, one of the most well-established natural-hazard (including earthquake) risk com-
putational platforms is HAZUS (Hazards United States) (FEMA, 2018b), which is used to calculate city-wide 
seismic losses across at least four continents (Freddi et al., 2021). Other procedures include MAEviz (Mid-Amer-
ica Earthquake Center Seismic Loss Assessment System) (Elnashai et al., 2008), SELENA (Seismic Loss Es-
timation using a Logic Tree Approach) (Molina et al., 2010), the OpenQuake Engine (Silva et al., 2014), and 
CAPRA (Comprehensive Approach to Probabilistic Risk Assessment) (Daniell et al., 2014). Recent state-of-the-
art achievements like the Federal Emergency Management Agency (FEMA) P-58 methodology (FEMA, 2018b) 
facilitate earthquake risk quantification at a finer resolution, offering the ability to conduct detailed structure-spe-
cific loss assessments that enable more informed decision-making for individual assets (Cremen, Seville, & 
Baker, 2020).

These tools have mainly been used to quantify earthquake risk in the context of the present day, and are designed 
for static (and often deterministic) representations of exposure and seismic vulnerability. This significantly inhib-
its their ability to be implemented in future earthquake risk-mitigation planning. Given that climate change (e.g., 
M. G. Stewart & Deng, 2015; Yang & Frangopol, 2020), rapid population growth (e.g., Muis et al., 2015; Yang & 
Frangopol, 2019) and urbanization are expected to significantly change the urban landscape (in terms of both ex-
posure and seismic vulnerability) in the coming decades, this is a generationally important issue. For example, the 
United Nations Human Settlements Programme (UN-Habitat) forecast that by 2050 some 70% of the world pop-
ulation will live in cites, adding some 2 billion citizens to the cities of the developing world (UN-Habitat, 2020). 
Reducing disaster risk in new developments built to accommodate these new citizens is urgent and essential. 
While some attempts have been made in the literature to model earthquake risk (or some of its components) from 
a future-focused perspective (e.g., Calderón & Silva, 2021; Lallemant, 2015; Lallemant et al., 2017; Motamed 
et al., 2020; Wyss, 2005), there remain a number of limitations associated with the state-of-the-art in this space.
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Firstly, future earthquake risk studies have predominantly focused on the evolution of exposure and vulnerability 
in the context of the (physical) built environment, failing to consider the effect of sociodemographic changes 
that are an important part of community resilience planning (Sutley et al., 2017). This means that they quantify 
earthquake risk in terms of traditional metrics like physical asset losses and casualties, which are narrow dimen-
sions of impact (Walsh & Hallegatte, 2020) that do not account for the disproportionate consequences of disas-
ters on vulnerable, low-income groups, for instance (e.g., Adnan et al., 2020; Markhvida et al., 2020; Verschuur 
et al., 2020). These studies are consequently missing a people-centered (ideally participatory) approach to future 
earthquake risk assessment (e.g., Scolobig et al., 2015; I. S. Stewart et al., 2017), which is actively encouraged 
by forward-looking international agreements on disaster risk management like the 2015–2030 Sendai Framework 
for Disaster Risk Reduction (Aitsi-Selmi et al., 2016). Shortcomings of existing future earthquake risk assess-
ment approaches stem from the general lack of a commonly agreed framework for modeling tomorrow's risks 
from natural hazards.

This study attempts to overcome these limitations, by proposing a comprehensive end-to-end simulation-based 
framework for quantifying future earthquake ground-shaking risk. The proposed framework can be used as 
part of an effective support environment for urban development decision making. Here we use the word ’en-
vironment’ to indicate the potential for iterative engagement with stakeholders to evolve optimized low-risk 
solutions within externally imposed constraints. Hence, the proposed framework is more than just a risk model 
or computational tool but provides an environment to support risk-sensitive planning decisions, incorporating 
a participatory approach to risk understanding and quantification that can account for diverse stakeholder 
priorities toward different dimensions of risk (see Galasso et al., 2021). The stakeholder steps into the process 
and is encouraged to engage with its functionality, potentially modifying its construction and many of its as-
sumptions. It is an invitation to co-production, providing decision support rather than a tool to usurp authority. 
In addition, it includes a harmonious integration of physical and social impact quantification that (a) explicitly 
accounts for uncertainties in the future projections of underlying variables (e.g., asset location and structural 
or nonstructural features, building fragility, age and income profile of inhabitants); and (b) facilitates a flexible 
approach to risk quantification beyond conventional asset losses. We apply the framework to the hypothetical 
city of “Futureville,” showcasing its ability to support decisions related to policy-making for the communities 
of tomorrow.

This paper is structured as follows. The framework is introduced and described in Section 2. Section 3 applies 
the framework to the city of “Futureville,” demonstrating how it can be used to determine the optimum future-fo-
cused policy according to different sets of stakeholder risk priorities. Section 4 highlights the versatility of the 
proposed framework, showcasing its ability to adapt to alternative assumptions and/or additional uncertainties in 
the underlying risk calculations. Conclusions of the paper are finally provided in Section 5.

2.  Proposed Framework
The proposed framework for earthquake risk-informed, people-centered future urban development is presented 
in Figure 1, and is composed of four main calculation stages (or modules): (a) Seismic Hazard Module; (b) En-
gineering Impact Module; (c) Social Impact Module; and (d) Decision Module. For a specific temporal instant 
in the future, each ith iteration of the framework evaluates the risk associated with a set of “hard” (i.e., directly 
related to the physics of the built environment, such as urban design that could constrain the location of future 
development and building code improvement) and/or “soft” (e.g., social safety nets, post-disaster financing or 
insurance) policies to be implemented, with the ultimate aim of identifying the policy option leading to the min-
imum risk outcome. In this context, risk refers to the collective values of collaboratively selected risk metrics 
that are weighted in line with the priorities of stakeholders (e.g., administrative authorities responsible for future 
urban development and related policy implementation and/or relevant community representatives). Monte Carlo 
simulation is used to capture uncertainties in the calculations, such that random variables included as part of 
Modules (1) to (3) are sampled Ns times at the specific temporal instant of interest, to produce the risk-metric 
values that act as input to Module (4) in each iteration. During the first iteration, the framework provides flexi-
bility to modify the considered risk metrics through a participatory process, which may require additional data 
collection and calculations in Modules (2) and (3). The components of the framework are now briefly explained, 
and are described in more detail for a case-study demonstration in Section 3.
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�1.	� Seismic Hazard Module: This module contains calculations related to the earthquake ground-shaking hazard 
of interest. This hazard could be expressed in the form of a scenario earthquake, with a prescribed rupture 
(i.e., magnitude, location, etc.) that produces either deterministic or uncertain ground-motion fields across 
target locations. The hazard could also be represented probabilistically, accounting for uncertainty in the rup-
ture features within a specified time frame (e.g., Iacoletti et al., 2021). However, time-based seismic hazard 
assessments are more likely to appeal to the insurance sector rather than public policy makers (Bonstrom 
et al., 2012). The scenario approach (as opposed to probabilistic seismic hazard analysis) is particularly ben-
eficial for communicating risk to a policy maker or to communities, who may not have an intuitive sense of 
probability and the dynamic discounting of financial assets (Bonstrom et al., 2012). Since ground-motion vari-
ability can dominate the uncertainty associated with scenario-based seismic risk calculations (e.g., Markhvida 
et al., 2020), adopting a fully deterministic earthquake scenario is useful for obtaining a more comprehensive 

Figure 1.  Proposed simulation-based framework for earthquake risk-informed and people-centered future planning.
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understanding of risk changes that are specifically related to the different policies of interest. The outputs of 
this module are ground-motion field estimates across a number of locations of interest (i.e., close to where 
assets/infrastructure at risk are located).
�These fields can be sampled from a ground-motion model (GMM), for instance, which describe probability 
density functions of different ground-motion intensity measures (i.e., descriptions of the strength of shaking) that 
are conditional on properties of the earthquake source, wave path, and site-specific characteristics (e.g., Stafford 
et al., 2008). GMMs typically have the following functional form (e.g., Cremen, Werner, & Baptie, 2020):

log(𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒,𝑛𝑛𝑟𝑟
) = log(𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒,𝑛𝑛𝑟𝑟

) + 𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝑒𝑒
𝜎𝜎𝐸𝐸 + 𝑧𝑧𝐴𝐴𝐴𝐴𝐴𝑒𝑒,𝑛𝑛𝑟𝑟𝜎𝜎𝐴𝐴� (1)

�where, for the ne-th event, 𝐴𝐴 log(𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑒𝑒,𝑛𝑛𝑟𝑟
) is the logarithm of the predicted intensity measure for the ground-mo-

tion field at the nr-th point; 𝐴𝐴 log(𝑖𝑖𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑒𝑒,𝑛𝑛𝑟𝑟
) is the corresponding logarithm of the GMM's median estimated 

intensity measure given certain variables (related to source, path, and site effects) and model parameters; 
𝐴𝐴 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝑒𝑒

 is the normalised inter-event residual (common across the ground-motion field of the ne-th event); and 
𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒,𝑛𝑛𝑟𝑟 is the normalised intra-event residual (that captures site-to-site variations in the ground-motion field). 

σE and σA are the GMM's inter-event and intra-event standard deviations, respectively. Models that account 
for correlations between the intra-event residuals at different locations - due to similarities in experienced 
wave path and fault distance - are often used in conjunction with GMMs, for more accurate representations of 
ground-motion fields and resulting damage/losses (e.g., Weatherill et al., 2015).
�Alternatively, ground-motion fields can be numerically simulated using physics-based models of source, 
path, and site effects (e.g., Graves et al., 2011) that are capable of computing the complete ground-motion 
time series. Physics-based simulations can lead to ground-motion predictions of similar or higher quality 
than statistically-driven GMMs (with lower uncertainty) (e.g., Bradley, 2019), but require significantly longer 
computational time and extensive input data that can prohibit their widespread use (e.g., Freddi et al., 2021).

�2.	� Engineering Impact Module: This module conducts calculations for assessing earthquake-induced physical 
damage (structural and nonstructural) to the future built environment (including buildings and critical infra-
structure). The outputs of this module are damage and/or direct asset loss estimates (e.g., repair cost, casual-
ties, asset downtime).
�Damage can be computed using building-level fragility functions for instance, which translate measures of 
ground-motion intensity (recorded or simulated at or near a given asset of interest) into probabilities of col-
lapse and/or other limit (or damage) states of interest (Porter et al., 2007). Losses may then be computed using 
damage-to-loss models that relate different damage states to various degrees of consequences, or vulnerability 
functions that estimate losses directly from ground-motion intensity measures (Martins & Silva, 2020). Fra-
gility functions, damage-to-loss models, and vulnerability functions can be obtained analytically, using the 
results of structural analyses that incorporate physics-based representations of the built environment (e.g., 
Baker, 2015; Pitilakis et al., 2014; Silva et al., 2019). They may also be empirically derived, based on damage 
data collected during past earthquakes (e.g., Gautam et al., 2018; Maqsood et al., 2016). Interconnected infra-
structure losses (e.g., downtime of a water or gas pipelines or road network) can be estimated using network 
analysis techniques that aggregate asset-specific consequences and account for inter-asset functionalities (e.g., 
Esposito et al., 2015; Guidotti et al., 2016).
�The exact spatial and physical configuration of the built environment (denoted as “Conditional Urban Plan” 
in Figure 1) can depend on projections of future population and land-use (Seto et al., 2012), as well as the 
potentially time-dependent vulnerability of engineering assets (Lallemant et al., 2017; Mondoro et al., 2018). 
Any proposed hard policies (such as structural or nonstructural improvements, building-code upgrades, and 
critical infrastructure relocation) will also influence the details of the future built environment.

�3.	� Social Impact Module: This module is used to enrich the asset loss estimates of the Engineering Impact 
Module on the basis of socio-economic and/or demographic projections. For example, Engineering Impact 
Module calculations of damage to commercial buildings could be combined in the Social Impact Module with 
data on the industrial flow of goods, to determine earthquake-induced impacts on the productivity of different 
economic sectors (Markhvida et al., 2020). This module also facilitates the disaggregation of asset losses in 
terms of socio-economic/demographic factors such as income level, age, or gender, which could be derived 
from census data or household surveys (among other sources). For instance, road network downtime outputs 
of the Engineering Impact Module can be attributed spatially to different socio-economic groupings, to deter-
mine accessibility losses across specific wealth classes (Miller & Baker, 2016).



Earth’s Future

CREMEN ET AL.

10.1029/2021EF002388

5 of 18

�The introduction of soft policies (related to disaster insurance or enhanced post-event liquidity access, for 
instance) can influence the coping capacity or response of different social systems to the hazard of interest, 
and can therefore alter the data examined in this module. The outputs of this module are used to construct risk 
metrics for decision making.

�4.	� Decision Module: This module leverages stakeholder feedback in a participatory process to determine: (1) the 
nfinal ultimate risk metrics to be considered based on outputs of the Social Impact Module. This step is neces-
sary for the first framework iteration only, when ninitial metrics initially proposed by the modeler are modified 
and finalized according to stakeholder perspectives; and (2) the weights to be placed on each finalized risk 
metric, in line with decision-maker risk priorities. Values for (2) can be obtained according to the analytic 
hierarchy process (Saaty, 1980), for instance. This procedure involves the stakeholders comparing the relative 
importance of pairs of risk metrics on a scale from 1/9 to 9, where 1 indicates both metrics are equally signif-
icant, 5 implies that risk metric #1 is strongly more important over risk metric #2, 9 indicates that risk metric 
#1 is significantly more important than risk metric #2, and reciprocal values imply inverse opinions. Weights 
wj for each metric are equivalent to the principal right eigenvector of an nfinal × nfinal matrix that summarizes 
the quantitative results of the comparison.

�5.	� Policy with Lowest Overall Risk: This calculation uses the outputs of the Decision Module across all npolicy 
examined policies in a decision-making algorithm to determine the overall risk associated with each policy. 
TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution; Yoon & Hwang, 1995) is one such 
decision-making approach that could be used in this module. This multi-criteria decision-making methodolo-
gy first involves normalizing the risk-metric values according to:

𝑟𝑟𝑖𝑖𝑖𝑖 =
𝑥𝑥𝑖𝑖𝑖𝑖

√

∑𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑘𝑘=1
𝑥𝑥2

𝑘𝑘𝑘𝑘

� (2)

�where xij is the magnitude of the jth risk metric for the ith policy. Then, the total distance of a given policy 
from the best and worst policies are respectively computed as:

𝑦𝑦
+
𝑖𝑖
=

√

√

√

√

𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
∑

𝑗𝑗=1

(𝑣𝑣+
𝑗𝑗
− 𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤𝑗𝑗)

2� (3)

�and

𝑦𝑦
−
𝑖𝑖
=

√

√

√

√

𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
∑

𝑗𝑗=1

(𝑣𝑣−
𝑗𝑗
− 𝑟𝑟𝑖𝑖𝑖𝑖𝑤𝑤𝑗𝑗)

2� (4)

�both rij and wj are as previously defined. 𝐴𝐴 𝐴𝐴+
𝑗𝑗
 and 𝐴𝐴 𝐴𝐴−

𝑗𝑗
 respectively denote the most ideal (i.e., minimum) and most 

non-ideal (i.e., maximum) values of rijwj across all examined policies. Finally, the best policy is deemed to be 
that with the largest Si value, calculated from:

𝑆𝑆𝑖𝑖 =
𝑦𝑦−
𝑖𝑖

𝑦𝑦−
𝑖𝑖
+ 𝑦𝑦+

𝑖𝑖

� (5)

3.  Case-Study Description
The virtual urban area examined here is a heavily altered version of the Centerville Virtual Community intro-
duced in Ellingwood et al. (2016) (Figure 2), herein referred to as “Futureville.” Futureville exists on the same 
104 km2 physical footprint as Centerville, but excludes for simplicity prominent geographical features (i.e., the 
hills and water bodies, given the focus on earthquake hazard only) and contains a modified set of Centerville's 
engineered assets (see Section 3.2). Futureville is divided into nine building zones, four of which (i.e., Zones 6–9) 
are yet to be developed. We specifically assess the implementation of policies at 2050, which is the target year for 
which Zones 6–9 are intended to be built. 1,000 Monte Carlo simulations are used for each policy iteration, which 
was found to produce reasonably stable results for the various framework outputs.
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3.1.  Seismic Hazard Module

We adopt a fully deterministic scenario-based approach for this study, assuming that the event of interest is a mag-
nitude 7 earthquake that occurs on a vertical strike-slip fault situated approximately 30 km southwest of Future-
ville. The only ground-motion intensity measure examined in this case is peak ground acceleration (PGA), given 
the format of the fragility functions used as part of the Engineering Impact Module (see Section 4.2). We first use 
the Boore et al. (2014) GMM to sample 1,000 sets of PGA values on a 500 × 500 m grid within each polygon of 
Futureville (assuming a uniform Vs30 value of 500 m/s across the city), incorporating spatial correlation in the 
intraevent term of the GMM using the model of Jayaram and Baker (2009). We then base the selected scenario 
on the set that produces the 75th percentile mean PGA value across all locations; this set is used for all Ns Monte 
Carlo simulations of the analysis. Figure 2b displays the chosen set of ground motions.

3.2.  Engineering Impact Module

The Engineering Impact Module focuses exclusively on buildings for this case study, assuming for simplicity that 
other infrastructure systems serving “Futureville” will maintain their functionality during the considered earth-
quake event. Zones 1–3 of “Futureville” are current residential zones, composed of only low-rise dwellings (i.e., 
light-frame wood buildings classified as “W1” in FEMA, 2018a), and contain a total of 8,309 buildings to serve 
the current (2021) Futureville population of 27,250 (note that the buildings in each zone are randomly positioned 
across a 20 m spaced grid). These zones are respectively associated with the same proportional distribution of 
building codes as the original Centerville Virtual Community z1 (52% of buildings are not seismically designed, 
47% have low strength and ductility, 1% have moderate strength and ductility), z2 (69% are not seismically 
designed and 31% have low strength and ductility) and z5 (100% are not seismically designed). Each current 
residential zone also contains one school (with the same characteristics as the RC3 structural type in the original 
Centerville, that is, low-rise concrete moment frame with moderate strength and ductility) and one grocery store 
(with the same characteristics as the S2 structural type-steel light frame with low strength and ductility-in the 
original Centerville) located at/near its centroid.

Zone 4 is a current retail/business zone containing 66 buildings randomly distributed across a 110 m-spaced grid, 
with the same proportional distribution of structure types as z9 of the original Centerville (31% of buildings are 
low-rise steel braced frame with low strength and ductility, 14% are low-rise concrete moment frame with low 
strength and ductility, 49% are low-rise reinforced masonry bearing walls with wood or metal deck diaphragms 
that are not seismically designed, and 6% are steel light frame with low strength and ductility). Zone 5 is a current 
heavy and light industrial zone containing 134 buildings randomly distributed across a grid of 110m spacing, 
with 50% of these sharing the characteristics as buildings in z10 of the original Centerville (low-rise steel braced 
frame that is not seismically designed), and the other 50% sharing the same building characteristics as z11 of 
the original Centerville (low-rise steel braced frame with moderate strength and ductility). We assume that the 
current buildings of Centerville will still exist in 2050, and will have the same seismic capacity as now (i.e., the 
potential time-dependence of building seismic fragilities are neglected at this stage of the analysis).

Figure 2.  (a) Physical outline of the “Futureville” case-study urban area; and (b) the set of PGA values associated with the selected (fully deterministic) scenario 
earthquake (see Section 3.1).
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Zones 6–8 will be future residential areas (with one grocery store and one school at/near their centroids) with the 
same type of building as Zones 1–3, and Zone 9 will be a future retail/business district with the same distribu-
tion of building types as Zone 4. All future buildings will be built to conform to the “high-code” description of 
FEMA (2018a), that is, they possess high strength and ductility. It is anticipated that the population of Futureville 
will grow broadly in line with a uniform distribution version of the Global United Nations Population Prospects 
for 2050 (United Nations, Department of Economic and Social Affairs, Population Division, 2019). Thus, the 
total 2050 population for each kth Monte Carlo simulation is computed as follows:

𝑝𝑝
𝑘𝑘

2050
=

27, 250

𝑝̃𝑝2020

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎
∑

𝑎𝑎𝑎𝑎𝑎𝑎=1

𝐹𝐹
−1
𝑎𝑎𝑎𝑎𝑎𝑎(𝑢𝑢𝑘𝑘)� (6)

where 𝐴𝐴 𝐴𝐴 −1
𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) is an inverse uniform distribution between the lower and upper 80 percent prediction intervals of 

the 2050 global population projections provided in United Nations, Department of Economic and Social Affairs, 
Population Division (2019) for a given age group (the results of which are reduced by 20% in the 18–25 years 
age category to accommodate out-of-town college students-see Section 4.3-assuming an even age distribution 
of the population across the 15–19  year grouping), nage is the total number of 5-year age groups considered 
in United Nations, Department of Economic and Social Affairs, Population Division  (2019), uk is a random 
number between 0 and 1, 𝐴𝐴 𝐴𝐴𝐴2020 is the United Nations, Department of Economic and Social Affairs, Population 
Division (2019) median projection of the world's total population in 2020, and 27,250 is the current population of 
Futureville (see Table 1). Since the exact layout of future development within Zones 6–9 is uncertain, the number 
and location of associated buildings varies for each simulation (see Figure 3). We assume that the number of 

Figure 3.  Current and future urban development in Futureville. Each subfigure displays a different Monte Carlo sample of future development in Zones 6–9 (see 
Figure 2). Note that each plotted point represents one building.
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residences is evenly distributed across Zones 6–8, and that for each Monte Carlo simulation, there are exactly 
enough buildings within these zones to facilitate the additional corresponding sampled Futureville population for 
2050. We assume that the number of buildings within Zone 9 is equal to 5% of the total number of buildings in 
Zones 6–8. For each simulation, every building in Zones 6–8 is randomly assigned to one point on a 20 m spaced 
grid, and each building in Zone 9 is randomly positioned on a 110 m spaced grid.

Note that the damage state of each building within Futureville is randomly sampled for each Monte Carlo simu-
lation according to the corresponding equivalent-PGA fragility functions in FEMA (2018a) and using the PGA 
output of the Seismic Hazard Module closest to the building's location. A selection of these fragility functions 
are presented in Figure 4, to illustrate capacity differences between different structural types and building codes. 
Information presented in this section is summarized in Table 2.

3.3.  Social Impact Module

This case study particularly focuses on socio-economic projections in terms of age and income (gender is not 
anticipated to be a defining vulnerability factor in 2050 Futureville). Zones 1–3 are respectively associated with 
the same median incomes as z1, z2, and z5 in the original Centerville. Thus, Zone 1 may be broadly classed as 
“high income.” Zone 2 may be described as “middle income,” and Zone 3 can be categorized as “low income.” 
Futureville's urban planners have provided the following details. Zone 6 will contain high-end residences that ac-

Figure 4.  Various FEMA (2018a) equivalent-peak ground acceleration fragility functions that describe the probability of experiencing at least moderate damage, 
corresponding to (a) different structural types built to the “high-code” specification of FEMA (2018a); and (b) light-frame wood buildings designed to different 
structural codes. W1 = light-frame wood, C1L = low-rise concrete moment frame, S3 = steel light frame, S2L = low-rise steel braced frame, and RM1L = low-rise 
reinforced masonry bearing walls with wood or metal deck diaphragms. Note that “pre-code,” “low-code,” “moderate-code,” “high-code,” and ”special high-code” 
respectively correspond to the absence of seismic-resistant design, low strength and ductility, moderate strength and ductility, the ”high-code” FEMA (2018a) 
specification, and the case of maximum strength and ductility for a high seismic design level.

Category 0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–99 100+

Current 1,342,381 1,253,463 1,192,080 1,150,350 973,155 833,622 591,786 312,459 124,116 20,814 573

Lower 1,269,615 1,266,264 1,267,036 1,300,654 1,194,791 1,094,850 970,549 659,939 331,652 67,685 2,831

Upper 1,484,382 1,437,483 1,386,278 1,305,112 1,200,160 1,103,399 987,084 689,381 368,406 80,614 3,649

Expected 4,821 4,545 4,179 4,561 4,192 3,848 3,427 2,362 1,226 260 11

Note. “Current” denotes the median population projection for 2020 (used in 𝐴𝐴 𝐴𝐴𝐴2020 of Equation 6), “Lower” indicates the lower 80 percent projection for 2050 (used 
as part of 𝐴𝐴 𝐴𝐴 −1

𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) in Equation 6) and “Upper” indicates the upper 80 percent projection for 2050 (also used as part of 𝐴𝐴 𝐴𝐴 −1
𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥) in Equation 6). Each column displays 

aggregated data across two five-year age groups, for brevity. Values in the first three rows of the table are expressed in thousands.

Table 1 
Population Projection Data Used in This Study From United Nations, Department of Economic and Social Affairs, Population Division (2019), as Well as the 
Resulting Expected Population of Futureville in 2050 (Indicated as “Expected”)
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commodate“high income” future residents, and the other two future residential zones will be populated with 50% 
middle- and 50% low-income housing. (Note that these future income/household distributions align with 2050 
socioeconomic projections for the city, and income bands for current residential zones are not expected to vary 
in the future). Each household will depend on the nearest grocery store for food needs. It is anticipated (based 
on the city's most recent census) that all people under the age of 60 will live in a residential building with three 
other people, all others will live in a two-person building, and there will be no disabled members of Futureville's 
population. All children under the age of 18 will avail of the nearest school and will live with at least two older 
people. The exact inhabitant profile of each individual building in 2050 is currently uncertain, and is therefore 
randomly sampled in line with the age distribution of the simulated population (see Equation 6) for each Monte 
Carlo simulation. While the proportion of college-going students among Futureville's population is currently neg-
ligible, a recent report commissioned by the city's administrators projects this to increase to 20% of all 18–25 year 
olds in 2050. Since Futureville does not (or will not) contain tertiary education facilities, we remove 20% of the 
simulated 18–25 year old population from our analysis.

Zone number Zone type Structural type Design-code distribution

1 Residential Light-frame Wood (Housing) 52% N, 47% L, 1% M

Low-rise Concrete Moment Frame (School) 100% M

Light-frame Steel (Grocery Store) 100% L

2 Residential Light-frame Wood (Housing) 69% N, 31% L

Low-rise Concrete Moment Frame (School) 100% M

Light-frame Steel (Grocery Store) 100% L

3 Residential Light-frame Wood (Housing) 100% N

Low-rise Concrete Moment Frame (School) 100% M

Light-frame Steel (Grocery Store) 100% L

4 Retail/Business Low-Rise Steel Braced Frame 100% L

Low-Rise Concrete Moment Frame 100% L

Low-Rise Reinforced Masonry Bearing Walls 100% N

Light-frame Steel 100% L

5 Industrial Low-rise Steel Braced Frame 100% N

Low-rise Steel Braced Frame 100% M

6 Residential Light-frame Wood (Housing) 100% H

Low-rise Concrete Moment Frame (School) 100% H

Light-frame Steel (Grocery Store) 100% H

7 Residential Light-frame Wood (Housing) 100% H

Low-rise Concrete Moment Frame (School) 100% H

Light-frame Steel (Grocery Store) 100% H

8 Residential Light-frame Wood (Housing) 100% H

Low-rise Concrete Moment Frame (School) 100% H

Light-frame Steel (Grocery Store) 100% H

9 Retail/Business Low-Rise Steel Braced Frame 100% H

Low-Rise Concrete Moment Frame 100% H

Low-Rise Reinforced Masonry Bearing Walls 100% H

Light-frame Steel 100% H

Note. In the “Design-Code Distribution” column, “N” indicates an absence of seismic-resistant design, “L” implies low strength and ductility, “M” represents moderate 
strength and ductility, and “H” denotes the ”high-code” FEMA (2018a) specification.

Table 2 
A Summary of Futureville Zone Information Related to the Engineering Impact Module (See Section 3.2)
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It is understood that all people between the ages of 18 and 60 living in the 
city will work at some location within Futureville (but the exact workplace 
of each person is currently uncertain). Workplace buildings are randomly 
assigned to each worker in a household for a given Monte Carlo simulation, 
in accordance with the following information obtained from Futureville's 
most recent census (which is not expected to notably change by 2050). All 
high-income workers work in retail/business zones. Middle-income workers 
are distributed in the ratio 7:2:1 among retail/business, light industry, and 
heavy industry. Low-income workers are distributed in the ratio 4:3:3 among 
retail/business, light industry, and heavy industry. It is anticipated that retail 
workers of Zones 1–3 will work in Zone 4, whereas retail workers of Zones 
6–8 will work in Zone 9. It is believed that all workers from the same house-
hold will work within the same Zone (but not necessarily the same building). 
A schematic summary of Futureville's engineering asset dependence across 
different demographic groups is presented in Figure 5.

3.4.  Proposed Policies

We examine three hypothetical policies in this case (two hard and one soft), 
which are mutually exclusive (and therefore intended for individual imple-
mentation) due to budgetary constraints. Policy #1 involves retrofitting all 

buildings within the existing low-income Zone 3 to conform to FEMA (2018a) high-code specification. Policy #2 
provides financial support to facilitate a requirement that all buildings within future Zones 6–9 are instead built to 
“special high-code,” and that all existing non-residential buildings with no seismic design are upgraded to FEMA 
(2018a) high-code specification. Policy #3 provides post-disaster employment insurance to all workers and issues 
post-disaster repair assistance that covers minor damage to residential structures.

Note that Policy #1 and Policy #2 alter the types of fragility functions considered in the Engineering Impact 
Module for certain buildings. Both of these policies result in the replacement of fragility functions for retrofitted 
buildings with corresponding FEMA  (2018a) models that represent high strength and ductility. Special-code 
buildings stipulated in Policy #2 are modeled using appropriate equivalent-PGA special high-code fragility func-
tions detailed in FEMA (2018a) (see Figure 4 for further explanation and an example). It is assumed that Policy 
#3 eliminates the need for people to depend on their workplace for income, and therefore removes Wy,z from the 
social network summarized in Figure 5. Policy #3 also avoids a self-funded payout in the case of minor residential 
damage, which may be particularly relevant for low-income households.

3.5.  Initial Risk Metrics

We initially assume that ninitial = 3 risk metrics are of interest to stakeholders: (a) the expected proportion of the 
population that is displaced; (b) the expected proportion of the population that experiences some financial loss 
due to damage to their residence (i.e., at least minor damage for Policy #1 and 2, and at least moderate damage 
for Policy #3); and (c) the maximum expected proportion of casualties across any time of the day, all of which 
are disaggregated in terms of income band and age bracket. Note that the expected values for all risk metrics are 
obtained by averaging the corresponding quantities produced from the Ns Monte Carlo samples.

For assessing the initial risk metric (1), we assume that all occupants of a household will be displaced for a 
given Monte Carlo simulation if there is moderate damage to at least two nodes of their social network, which 
includes the residence itself, the nearest grocery store and can also (for relevant age groups) incorporate schools 
and workplaces (except in the case of Policy #3, as described in Section 3.4). As discussed above, we assume for 
simplicity that other infrastructure systems (e.g., transportation network) serving “Futureville” will maintain their 
functionality during the considered earthquake event so that any disruption/people displacement only depends on 
building damage. The initial risk metric (3) is computed using the aggregate of all casualty rates (i.e., accounting 
for each casualty severity level, including minor injuries) provided in Tables 12–3 to 12–11 of FEMA (2018a), 
according to each building type included in Futureville. It is assumed that all of Futureville's oldest (i.e., 60 or 
over) residents will be at home when the earthquake occurs, and those younger than 60 will be at their residence if 

Figure 5.  A graphical summary of asset dependence (i.e., the social network) 
for different demographic groups within Futureville. Within the b-th zone, 
the a-th household Ha,b (containing either four people under the age of 60 or 
two people above this age) depends on the local grocery store Stb. Each adult 
inhabitant of Ha,b under the age of 60 works at some y-th workplace Wy,z within 
a different (z-th) zone. Each child inhabitant of Ha,b attends the local school Sb.
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the earthquake occurs at nighttime and/or on a weekend. For a weekday earthquake in the daytime or at commute 
time, it is assumed that all workers will be at work and that all children will be at school. The indoor/outdoor 
population distribution of a given building is obtained from Table 12–2 of FEMA (2018a), using “Residential” 
occupancy values for casualties that occur at home, “Commercial” occupancy values for casualties in Zones 4 and 
9, and “Industrial” occupancy values for casualties in Zone 5. We find that the maximum expected proportion of 
casualties occurs for a daytime earthquake on a weekday, which is therefore used as the temporal basis for initial 
risk metric (3).

Values of each initial risk metric are displayed in Figures 6 and 7 across the three examined policies; also shown 
for completeness are results for the case in which no policy is implemented, as well as median, 25th, and 75th 
percentile values to convey the underlying distributions. It is interesting to note that the expected proportion of 
the oldest age group displaced is significantly lower than that of younger age groups, for all cases. This may be 
explained by the fact that the displacement of the oldest age group does not depend on the functionality of either 
workplaces or schools. In the case of Policy #3 (where displacement of all ages is independent of workplace 
damage), the most affected age group is clearly young people, whose post-disaster displacement status (and that 
of the adults they live with) depends on the functionality of the nearest school (in addition to that of the grocery 
store and their place of residence).

The expected proportion of the population that experiences some financial loss due to residential damage is no-
tably lower for Policy #3 than other cases, across all ages and income levels. This is because the level of damage 

Figure 6.  (a) Proportion of the population that will be dislocated; (b) Proportion of the population that will need to self-fund some repair costs for residential damage; 
and (c) Proportion of casualties, across the three examined policies and if no policy is implemented, disaggregated by age.
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that triggers self-funded repairs is higher for Policy #3 (i.e., moderate damage vs. minor damage for other cases). 
A further noteworthy observation from Figure 7 is that while the proportion of the population experiencing loss 
due to residential damage for a given policy case is fairly constant across all age groups, there are some discrep-
ancies in the value of this metric for different income groups, which vary for different policies. For example, the 
proportion of low-income households experiencing residential-damage-induced loss is significantly larger than 
that of higher income groups except for Policy #1 (as expected, since this policy particularly targets a low-income 
residential zone).

It can be seen that the total expected proportion of casualties is approximately 1% of the future projected popu-
lation. The most affected age group in terms of casualties is adults under the age of 60, suggesting that the ma-
jority of casualties occur in workplaces. This conclusion is supported by the fact that Policy #2 - which involves 
retrofitting work buildings that have not been seismically engineered - significantly mitigates the discrepancy in 
casualties between age groups. The poorest residents of Futureville tend to suffer more casualties than those of 
other income groups, except in the case of the low-income targeted Policy #1.

There is noticeable uncertainty in the underlying distributions of initial risk metrics (1) and (3). This observation 
may be partially explained by the large dispersions that characterize FEMA (2018a) equivalent-PGA fragility 
functions; the resulting uncertainties in damage states could be reduced using state-of-the-art structure-specific 
analytical fragility models that use more appropriate ground-motion intensity measures for damage quantifi-
cation (e.g., Silva et  al.,  2019). The variability associated with initial risk metric (1) may also be caused by 

Figure 7.  (a) Proportion of the population that will be dislocated; (b) Proportion of the population that will need to self-fund some repair costs for residential damage; 
and (c) Proportion of casualties, across the three examined policies and if no policy is implemented, disaggregated by income bracket.
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the dependence of this metric on the uncertain states of multiple engineered 
assets. The breadth of the distribution underlying initial risk metric (3) can 
be partially attributed to the large variation in casualty rates associated with 
different damage states of a given building type (see Tables 12–3 to 12–11 of 
FEMA, 2018a); this type of uncertainty can be mitigated by adopting more 
sophisticated casualty models that explicitly capture potential injuries and 
fatalities associated with building-specific structural and non-structural com-
ponents (e.g., FEMA, 2018b).

3.6.  Decision Module

The initial risk metrics are discussed with hypothetical stakeholders in Future-
ville, whose feedback leads to several modifications. The stakeholders are in-
terested in the expected proportion of total people displaced (PDtotal) across all 
income bands and ages (Risk Metric #1), and would like to quantify the extent 
to which those in the low-income band disproportionally experience some loss-
es related to residential damage. Due to the relatively low number of resulting 
casualties (predominantly minor injuries), which is insignificant compared to 

the potentially vast amount of people affected by cascading impacts of displacement and low-income residential 
damage (e.g., Chang-Richards et al., 2019; Mallick & Vogt, 2014; Office of the US Surgeon General, 2009; Watson 
et al., 2007), the stakeholders have chosen to neglect the third initial risk metric in the analysis (and it is therefore 
removed from consideration in subsequent calculations).

We leverage a modified version of the Poverty Exposure Bias Indicator introduced in Winsemius et al. (2018) 
- called the Poverty Bias Indicator (PBI; Risk Metric #2) - to express the disproportional losses experienced by 
low-income households, as follows:

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑎𝑎
− 1� (7)

where losslow indicates the expected proportion of low-income households that experience loss due to self-funded 
residential repairs and lossall is the equivalent expected proportion of all households. A negative value of PBI indi-
cates a pro-poor approach (i.e., the proportion of low-income households experiencing losses is less than average). 
The underlying data for Risk Metrics #1 and #2 may be derived from the results shown in Figures 6 and 7, so no ad-
ditional iteration through the Engineering Impact Module and the Social Impact Module is necessary in this case.

A summary of Risk Metric #1 and #2 values are shown in Figure 8, for the three examined policies. Results for the 
case in which no policy is implemented are also shown for completeness. Among the Policies #1–3, it can be seen 
that Policy #1 is associated with the lowest (i.e., most pro-poor) value of PBI, but results in the largest expected 
proportion of people displaced. Policy #3 produces the highest (and therefore worst) value of PBI, but is expected to 
result in a lower level of population displacement than both other policies. Policy #2 produces intermediate results 
for both metrics. The “No Policy” case leads to a worse outcome than any examined policy in terms of population 
displacement. However, it is associated with a much smaller PBI value than Policy #3, indicating that doing nothing 
is a more pro-poor strategy than offering post-disaster repair assistance for minor damage at least for the scenario 
earthquake examined, which results in the strongest shaking in the low-income Zone 3-see Figure 2b.

We assume that the finalized risk metrics are weighted according to the analytic hierarchy process (see Section 3). 
Stakeholder feedback has suggested that it is equally important to minimize both metrics, so w1 = w2 = 0.5.

3.7.  Policy With Lowest Overall Risk

We leverage the TOPSIS multi-criteria decision-making methodology (see 
Section 2) to compare the risk associated with the npolicy = 3 examined poli-
cies. A summary of Si values for each examined policy is provided in Table 3. 
It can be seen that Policy #1 is the best option in this case.

Figure 8.  Values of PBI and PDtotal risk metrics across the three examined 
policies and if no policy is implemented.

Weighting scheme S1 S2 S3

w1 = w2 = 0.5 0.76 0.55 0.24

Note. Bold font indicates the optimum policy selection.

Table 3 
Si Values for the Three Examined Policies
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4.  Sensitivity Analyses
The case study of the proposed framework presented in Section 3 relied on a number of assumptions and hypo-
thetically known details related to the data required for all modules. The purpose of this section is to demonstrate 
the versatility of the framework, by investigating the impact on the overall results of some alternative assumptions 
and additional uncertainties in the underlying data.

The first sensitivity analysis (herein referred to as “SA #1”) alters the Seismic Hazard Module, by replacing the 
scenario earthquake with a fully deterministic magnitude 6 rupture that is located 20 km closer to Futureville. 
(Note that the GMM and spatial correlation model remain unchanged, and the set of ground-motion fields that 
forms the basis of the scenario is chosen using the procedure outlined in Section 3.1).

The second sensitivity analysis (consequently labeled as “SA #2”) modifies the Engineering Impact Module, 
by assuming that the seismic resistance of current buildings degrades with age. The dynamic vulnerability of 
engineered assets is an important consideration for seismic risk analyses (Lallemant et al., 2017) that is often 
overlooked in conventional risk assessments (Lallemant, 2015). For this analysis, the median values of the fragil-
ity functions associated with each current building are independently reduced by a uniformly distributed factor 
between 0.2 and 0.3 in each Monte Carlo iteration of the computation, which is broadly in line with the 25-year 
aging effects on vulnerability found in Karapetrou et al. (2017). (Note that all retrofits included in Policies #1 and 
#2 are assumed to take place today, and are therefore also affected by reduced vulnerability in SA #2).

The third sensitivity analysis (henceforth regarded as “SA #3”) investigates the implications of not knowing the 
breakdown of employment industry by income grouping. In this case, the work zone of each household for a 
given Monte Carlo simulation is randomly sampled (with equal likelihood) from retail/business, light industry, 
and heavy industry. (Retail/business workers within Zones 1–3 and Zones 6–9 are still assumed to work in Zones 
4 and 9, respectively).

The PBI and PDtotal risk metric values associated with each analysis are summarized in Figure 9. The general 
trend in risk-metric values is the same across each SA; Policy #1 always leads to the lowest value of PBI, whereas 
PDtotal is consistently minimized by applying Policy #3. However, there is noteworthy variation in the absolute 
values of the risk metrics for different analyses. In particular, it is interesting to note that SA #1 results in lower 
PBI values than the base (Section 3) analysis, implying that the location of the selected scenario earthquake 
requires careful consideration when evaluating the pro-poor effect of a given policy. Values of PDtotal are signif-
icantly higher than those of the original Section 3 calculations and less conservative PBI values are obtained if 
the vulnerability of existing structures degrades in time, further underlining the importance of considering this 
possibility when evaluating future risks. Another interesting observation is that SA #3 produces near-equivalent 
PDtotal results to those of the original calculations (note that SA #3 does not influence PBI values, which exclu-
sively relate to residential damage). However, it is important to note that SA #3 does lead to notable changes in 
the expected proportion of people displaced within given income brackets, and therefore the appropriate inclusion 
of uncertainties in the Social Impact Module can be crucial for accurately characterizing certain risk metrics.

The final part of this section evaluates the optimum policy for each SA and various alternative potential stakeholder 
risk priorities (i.e., different values of wj in Equations 3 and 4) that may arise due to diverse political outlooks, for 
instance: w1 = 0.5, w2 = 0.5 (reducing PBI and reducing PDtotal are equally important), w1 = 0.9, w2 = 0.1 (reduc-
ing population displacement is prioritized), and w1 = 0.1, w2 = 0.9 (reducing poverty bias in losses is prioritized). 
Table 4 presents the resulting Si values for each SA, as well as for the original calculations. All of the various 
analyses lead to the same conclusion. Policy #1 is the best option if equal importance is placed on both risk types 
and if adopting a pro-poor approach is prioritized, whereas Policy #3 is the optimum selection if stakeholders place 
higher importance on minimizing population displacement. The equivalent ultimate findings of each analysis is not 
unexpected, given the same general trend in risk-metric values that was observed for each policy in Figures 8 and 9.

5.  Conclusions
This paper has introduced an end-to-end simulation-based framework for modeling risks associated with future 
earthquakes, which addresses some significant gaps associated with state-of-practice approaches to future seis-
mic risk assessment. The framework may be leveraged to support decision making on urban planning/design 
and/or related policies, accounting for varied stakeholders perspectives and priorities around the concept of risk.
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We demonstrated the framework using the hypothetical city of “Futureville,” which was conceived on the basis 
of completely synthetic physical and socio-demographic data. In particular, we showcased the framework's 
ability to determine the optimum among a set of potential earthquake risk-reduction policies, considering the 
risk dimensions of interest to stakeholders and a multitude of uncertainties inherent in future projections of 
urban landscapes. We ultimately determined that the optimum policy can change depending on stakeholder's 
priorities toward different risk types. This finding, which mirrors the conclusions of similar studies in different 
contexts (e.g., Cremen & Galasso, 2021), underlines the critical importance of a collaborative risk assessment 
process that integrates stakeholder participation, capacity and feedback (Galasso et al., 2021). For the spe-
cific case study examined, it was found that a “soft policy” of providing post-disaster financial assistance for 
city inhabitants is the best option if stakeholders are most interested in minimizing population displacement, 
whereas a “hard policy” of replacing low-income housing and facilities with code-compliant buildings is the 
optimal solution for stakeholders who are particularly motivated to reduce the relative burden of financial loss 
on the city's poorest.

While the hypothetical case study used was relatively limited in scope (i.e., considered only two or three risk 
metrics, incorporated a simplified earthquake scenario calculated purely on the basis of statistical models, and 
made a number of elementary assumptions on the city's functionality), we further demonstrated that the proposed 
framework is versatile enough for accommodating flexible (and potentially more realistic) data in each of its 
core modules, through a series of sensitivity analyses that altered the hypothetical inputs and/or amplified the 
uncertainties present in the underlying calculations. The ultimate conclusions of the study remained unchanged 
in these supplementary analyses. However, variations in the absolute values of the risk metrics obtained underline 
the importance of accurately characterizing the input data and the associated uncertainties, which the proposed 
framework is explicitly designed to facilitate. We anticipate that the framework has the potential to play a leading 

Figure 9.  Values of PBI and PDtotal risk metrics across the three examined policies and if no policy is implemented, for (a) SA #1; (b) SA #2; and (c) SA #3.
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role in preparing societies for future challenges related to earthquake hazards, directly addressing a need outlined 
in both the Sendai Framework for Disaster Risk Reduction (Aitsi-Selmi et al., 2016) and the United Nations Sus-
tainable Development Goal 11 (Sustainable Cities and Communities; UN General Assembly, 2015).

Finally, while this specific paper focuses on earthquake ground-shaking risk, the proposed framework can be 
easily extended to more earthquake-related hazards (e.g., liquefaction, tsunami inundation) or other (multiple) 
natural hazards with some ad-hoc modifications. For instance, tsunami inundation would require relevant tsunami 
intensity measures (e.g., peak velocity, momentum flux) to be output from the “Seismic Hazard Module.” Future 
risks from river and flash flood hazard in urban/rural environments could be modeled by switching the positions 
of the Hazard and Engineering Impact Modules. This alteration would be necessary to account for the hazard's 
dependence on environmental change resulting from socioeconomic development; the expansion of impermeable 
surfaces (e.g., concrete or paved surfaces replacing natural ground cover) decreases infiltration and increases 
runoff during precipitation events.

Data Availability Statement
Data created will be made available on Github at https://github.com/gcrem/.

References
Adnan, M. S. G., Abdullah, A. Y. M., Dewan, A., & Hall, J. W. (2020). The effects of changing land use and flood hazard on poverty in coastal 

Bangladesh. Land Use Policy, 99, 104868. https://doi.org/10.1016/j.landusepol.2020.104868
Aitsi-Selmi, A., Murray, V., Wannous, C., Dickinson, C., Johnston, D., Kawasaki, A., et al. (2016). Reflections on a science and technology agenda 

for 21st century disaster risk reduction. International Journal of Disaster Risk Science, 7(1), 1–29. https://doi.org/10.1007/s13753-016-0081-x
Baker, J. W. (2015). Efficient analytical fragility function fitting using dynamic structural analysis. Earthquake Spectra, 31(1), 579–599. https://

doi.org/10.1193/021113eqs025m
Bonstrom, H., Corotis, R., & Porter, K. (2012). Overcoming public and political challenges for natural hazard risk investment decisions. Journal 

of Integrated Disaster Risk Management, 2(1). https://doi.org/10.5595/idrim.2012.0030
Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for 

shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085.

Weighting scheme S1 S2 S3

Original calculations (3)

  w1 = w2 = 0.5 0.76 0.55 0.24

  w1 = 0.9, w2 = 0.1 0.26 0.20 0.74

  w1 = 0.1, w2 = 0.9 0.97 0.60 0.03

SA #1

  w1 = w2 = 0.5 0.78 0.56 0.22

  w1 = 0.9, w2 = 0.1 0.28 0.20 0.72

  w1 = 0.1, w2 = 0.9 0.97 0.60 0.03

SA #2

  w1 = w2 = 0.5 0.83 0.64 0.17

  w1 = 0.9, w2 = 0.1 0.35 0.27 0.65

  w1 = 0.1, w2 = 0.9 0.98 0.67 0.02

SA #3

  w1 = w2 = 0.5 0.76 0.55 0.24

  w1 = 0.9, w2 = 0.1 0.26 0.20 0.74

  w1 = 0.1, w2 = 0.9 0.97 0.60 0.03

Note. Si values associated with the original calculations in Section 3 are also shown for completeness. Bold font indicates the 
optimum policy selection.

Table 4 
Si Values for the Three Examined Policies Across SA #1, SA #2, and SA #3

Acknowledgments
We acknowledge funding from UKRI 
GCRF under grant NE/S009000/1, 
Tomorrow's Cities Hub. We thank Connie 
Hale, Center for Risk-Based Community 
Resilience Planning at Colorado State 
University, for providing the shapefiles of 
the Centerville Virtual Community.

https://github.com/gcrem/
https://doi.org/10.1016/j.landusepol.2020.104868
https://doi.org/10.1007/s13753-016-0081-x
https://doi.org/10.1193/021113eqs025m
https://doi.org/10.1193/021113eqs025m
https://doi.org/10.5595/idrim.2012.0030


Earth’s Future

CREMEN ET AL.

10.1029/2021EF002388

17 of 18

Bradley, B. A. (2019). On-going challenges in physics-based ground motion prediction and insights from the 2010–2011 Canterbury and 2016 Kai-
koura, New Zealand earthquakes. Soil Dynamics and Earthquake Engineering, 124, 354–364. https://doi.org/10.1016/j.soildyn.2018.04.042

Calderón, A., & Silva, V. (2021). Exposure forecasting for seismic risk estimation: Application to Costa Rica. Earthquake Spectra, 37, 1806–
1826. https://doi.org/10.1177/8755293021989333

Chang-Richards, A., Seville, E., Wilkinson, S., & Walker, B. (2019). Effects of disasters on displaced workers. In Resettlement challenges for 
displaced populations and refugees (pp. 185–195). Springer. https://doi.org/10.1007/978-3-319-92498-4_14

Cremen, G., & Galasso, C. (2021). A decision-making methodology for risk-informed earthquake early warning. (Vol. 36, pp. 747–761) Comput-
er-Aided Civil and Infrastructure Engineering. https://doi.org/10.1111/mice.12670

Cremen, G., Seville, E., & Baker, J. W. (2020). Modeling post-earthquake business recovery time: An analytical framework. International Jour-
nal of Disaster Risk Reduction, 42, 101328. https://doi.org/10.1016/j.ijdrr.2019.101328

Cremen, G., Werner, M. J., & Baptie, B. (2020). A new procedure for evaluating ground-motion models, with application to hydrau-
lic-fracture-induced seismicity in the United Kingdom. Bulletin of the Seismological Society of America, 110(5), 2380–2397. https://doi.
org/10.1785/0120190238

Daniell, J., Simpson, A., Murnane, R., Tijssen, A., Nunez, A., Deparday, V., & Schäfer, A. (2014). Review of open source and open access soft-
ware packages available to quantify risk from natural hazards. World Bank and Global Facility for Disaster Reduction and Recovery.

Ellingwood, B. R., Cutler, H., Gardoni, P., Peacock, W. G., van de Lindt, J. W., & Wang, N. (2016). The Centerville Virtual Community: A fully 
integrated decision model of interacting physical and social infrastructure systems. Sustainable and Resilient Infrastructure, 1(3–4), 95–107. 
https://doi.org/10.1080/23789689.2016.1255000

Elnashai, A., Hampton, S., Lee, J. S., McLaren, T., Myers, J. D., Navarro, C., & Tolbert, N. (2008). Architectural overview of MAEviz–HAZ-
TURK. Journal of Earthquake Engineering, 12(S2), 92–99. https://doi.org/10.1080/13632460802013610

Esposito, S., Iervolino, I., d’Onofrio, A., Santo, A., Cavalieri, F., & Franchin, P. (2015). Simulation-based seismic risk assessment of gas distribu-
tion networks. Computer-Aided Civil and Infrastructure Engineering, 30(7), 508–523. https://doi.org/10.1111/mice.12105

FEMA (2018a). FEMA P-58-1: Seismic performance assessment of buildings. Volume 1–methodology. Federal Emergency Management Agency.
FEMA (2018b). HAZUS 4.2: Earthquake model technical manual. Federal Emergency Management Agency (FEMA).
Freddi, F., Galasso, C., Cremen, G., Dall’Asta, A., Di Sarno, L., Giaralis, A., et al. (2021). Innovations in earthquake risk reduction for resilience: 

Recent advances and challenges. International Journal of Disaster Risk Reduction, 60, 102267. https://doi.org/10.1016/j.ijdrr.2021.102267
Galasso, C., McCloskey, J., Pelling, M., Hope, M., Bean, C., Cremen, G., & others (2021). Risk-based, pro-poor urban design and planning for 

tomorrow’s cities. International Journal of Disaster Risk Reduction, 58(1), 102158. https://doi.org/10.1016/j.ijdrr.2021.102158
Gautam, D., Fabbrocino, G., & de Magistris, F. S. (2018). Derive empirical fragility functions for Nepali residential buildings. Engineering 

Structures, 171, 617–628. https://doi.org/10.1016/j.engstruct.2018.06.018
Graves, R., Jordan, T. H., Callaghan, S., Deelman, E., Field, E., Juve, G., & others (2011). Cybershake: A physics-based seismic hazard model for 

southern California. Pure and Applied Geophysics, 168(3), 367–381. https://doi.org/10.1007/s00024-010-0161-6
Guidotti, R., Chmielewski, H., Unnikrishnan, V., Gardoni, P., McAllister, T., & van de Lindt, J. (2016). Modeling the resilience of critical infra-

structure: The role of network dependencies. Sustainable and resilient infrastructure, 1(3–4), 153–168. https://doi.org/10.1080/23789689.20
16.1254999

Iacoletti, S., Cremen, G., & Galasso, C. (2021). Advancements in multi-rupture time-dependent seismic hazard modeling, including fault interac-
tion. Earth-Science Reviews, 220, 103650. https://doi.org/10.1016/j.earscirev.2021.103650

Jayaram, N., & Baker, J. W. (2009). Correlation model for spatially distributed ground-motion intensities. Earthquake Engineering & Structural 
Dynamics, 38(15), 1687–1708. https://doi.org/10.1002/eqe.922

Karapetrou, S., Fotopoulou, S., & Pitilakis, K. (2017). Seismic vulnerability of RC buildings under the effect of aging. Procedia Environmental 
Sciences, 38, 461–468. https://doi.org/10.1016/j.proenv.2017.03.137

Lallemant, D. (2015). Modeling the future disaster risk of cities to envision paths towards their future resilience (Unpublished doctoral disserta-
tion). Stanford University. https://searchworks.stanford.edu/view/11513622

Lallemant, D., Burton, H., Ceferino, L., Bullock, Z., & Kiremidjian, A. (2017). A framework and case study for earthquake vulnerability assess-
ment of incrementally expanding buildings. Earthquake Spectra, 33(4), 1369–1384. https://doi.org/10.1193/011116eqs010m

Mallick, B., & Vogt, J. (2014). Population displacement after cyclone and its consequences: Empirical evidence from coastal Bangladesh. Natural 
Hazards, 73(2), 191–212. https://doi.org/10.1007/s11069-013-0803-y

Maqsood, T., Edwards, M., Ioannou, I., Kosmidis, I., Rossetto, T., & Corby, N. (2016). Seismic vulnerability functions for Australian buildings 
by using gem empirical vulnerability assessment guidelines. Natural Hazards, 80(3), 1625–1650. https://doi.org/10.1007/s11069-015-2042-x

Markhvida, M., Walsh, B., Hallegatte, S., & Baker, J. (2020). Quantification of disaster impacts through household well-being losses. Nature 
Sustainability, 3, 538–547. https://doi.org/10.1038/s41893-020-0508-7

Martins, L., & Silva, V. (2020). Development of a fragility and vulnerability model for global seismic risk analyses. Bulletin of Earthquake En-
gineering, 19, 1–27. https://doi.org/10.1007/s10518-020-00885-1

Miller, M., & Baker, J. W. (2016). Coupling mode-destination accessibility with seismic risk assessment to identify at-risk communities. Relia-
bility Engineering & System Safety, 147, 60–71. https://doi.org/10.1016/j.ress.2015.10.018

Molina, S., Lang, D. H., & Lindholm, C. D. (2010). Selena–an open-source tool for seismic risk and loss assessment using a logic tree computa-
tion procedure. Computers & Geosciences, 36(3), 257–269. https://doi.org/10.1016/j.cageo.2009.07.006

Mondoro, A., Frangopol, D. M., & Liu, L. (2018). Bridge adaptation and management under climate change uncertainties: A review. Natural 
Hazards Review, 19(1), 04017023. https://doi.org/10.1061/(asce)nh.1527-6996.0000270

Motamed, H., Ghafory-Ashtiany, M., Amini-Hosseini, K., Mansouri, B., & Khazai, B. (2020). Earthquake risk–sensitive model for urban land use 
planning. Natural Hazards, 103, 87–102. https://doi.org/10.1007/s11069-020-03960-7

Muis, S., Güneralp, B., Jongman, B., Aerts, J. C., & Ward, P. J. (2015). Flood risk and adaptation strategies under climate change and ur-
ban expansion: A probabilistic analysis using global data. Science of the Total Environment, 538, 445–457. https://doi.org/10.1016/j.
scitotenv.2015.08.068

Office of the US Surgeon General (2009). The surgeon general’s call to action to promote healthy homes.
Pitilakis, K., Karapetrou, S., & Fotopoulou, S. (2014). Consideration of aging and SSI effects on seismic vulnerability assessment of RC build-

ings. Bulletin of Earthquake Engineering, 12(4), 1755–1776. https://doi.org/10.1007/s10518-013-9575-8
Porter, K., Kennedy, R., & Bachman, R. (2007). Creating fragility functions for performance-based earthquake engineering. Earthquake Spectra, 

23(2), 471–489. https://doi.org/10.1193/1.2720892
Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. McGraw-Hill International Book Co.
Scolobig, A., Prior, T., Schröter, D., Jörin, J., & Patt, A. (2015). Towards people-centred approaches for effective disaster risk management: 

Balancing rhetoric with reality. International Journal of Disaster Risk Reduction, 12, 202–212. https://doi.org/10.1016/j.ijdrr.2015.01.006

https://doi.org/10.1016/j.soildyn.2018.04.042
https://doi.org/10.1177/8755293021989333
https://doi.org/10.1007/978-3-319-92498-4_14
https://doi.org/10.1111/mice.12670
https://doi.org/10.1016/j.ijdrr.2019.101328
https://doi.org/10.1785/0120190238
https://doi.org/10.1785/0120190238
https://doi.org/10.1080/23789689.2016.1255000
https://doi.org/10.1080/13632460802013610
https://doi.org/10.1111/mice.12105
https://doi.org/10.1016/j.ijdrr.2021.102267
https://doi.org/10.1016/j.ijdrr.2021.102158
https://doi.org/10.1016/j.engstruct.2018.06.018
https://doi.org/10.1007/s00024-010-0161-6
https://doi.org/10.1080/23789689.2016.1254999
https://doi.org/10.1080/23789689.2016.1254999
https://doi.org/10.1016/j.earscirev.2021.103650
https://doi.org/10.1002/eqe.922
https://doi.org/10.1016/j.proenv.2017.03.137
https://searchworks.stanford.edu/view/11513622
https://doi.org/10.1193/011116eqs010m
https://doi.org/10.1007/s11069-013-0803-y
https://doi.org/10.1007/s11069-015-2042-x
https://doi.org/10.1038/s41893-020-0508-7
https://doi.org/10.1007/s10518-020-00885-1
https://doi.org/10.1016/j.ress.2015.10.018
https://doi.org/10.1016/j.cageo.2009.07.006
https://doi.org/10.1061/(asce)nh.1527-6996.0000270
https://doi.org/10.1007/s11069-020-03960-7
https://doi.org/10.1016/j.scitotenv.2015.08.068
https://doi.org/10.1016/j.scitotenv.2015.08.068
https://doi.org/10.1007/s10518-013-9575-8
https://doi.org/10.1193/1.2720892
https://doi.org/10.1016/j.ijdrr.2015.01.006


Earth’s Future

CREMEN ET AL.

10.1029/2021EF002388

18 of 18

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon 
pools. Proceedings of the National Academy of Sciences, 109(40), 16083–16088. https://doi.org/10.1073/pnas.1211658109

Silva, V., Akkar, S., Baker, J., Bazzurro, P., Castro, J. M., Crowley, H., et al. (2019). Current challenges and future trends in analytical fragility 
and vulnerability modeling. Earthquake Spectra, 35(4), 1927–1952. https://doi.org/10.1193/042418eqs101o

Silva, V., Crowley, H., Pagani, M., Monelli, D., & Pinho, R. (2014). Development of the openquake engine, the global earthquake model’s open-
source software for seismic risk assessment. Natural Hazards, 72(3), 1409–1427. https://doi.org/10.1007/s11069-013-0618-x

Stafford, P. J., Strasser, F. O., & Bommer, J. J. (2008). An evaluation of the applicability of the NGA models to ground-motion prediction in the 
Euro-Mediterranean region. Bulletin of Earthquake Engineering, 6(2), 149–177. https://doi.org/10.1007/s10518-007-9053-2

Stewart, I. S., Ickert, J., & Lacassin, R. (2017). Communicating seismic risk: The geoethical challenges of a people-centred, participatory ap-
proach. Annals of Geophysics, 60. https://doi.org/10.4401/ag-7593

Stewart, M. G., & Deng, X. (2015). Climate impact risks and climate adaptation engineering for built infrastructure. ASCE-ASME Journal of Risk 
and Uncertainty in Engineering Systems, Part A: Civil Engineering, 1(1), 04014001. https://doi.org/10.1061/ajrua6.0000809

Sutley, E. J., van de Lindt, J. W., & Peek, L. (2017). Community-level framework for seismic resilience. I: Coupling socioeconomic characteristics 
and engineering building systems. Natural Hazards Review, 18(3), 04016014. https://doi.org/10.1061/(asce)nh.1527-6996.0000239

UN General Assembly. (2015). Transforming our world : The 2030 agenda for sustainable development, 21 October 2015, A/RES/70/1. Accessed 
January 10, 2022. https://www.refworld.org/docid/57b6e3e44.html

UN-Habitat. (2020). World cities report 2020: The value of sustainable urbanization.
United Nations, Department of Economic and Social Affairs, Population Division. (2019). World Population Prospects 2019: Volume I: Com-

prehensive Tables.
Verschuur, J., Koks, E., Haque, A., & Hall, J. (2020). Prioritising resilience policies to reduce welfare losses from natural disasters: A case study 

for coastal Bangladesh. Global Environmental Change, 65, 102179. https://doi.org/10.1016/j.gloenvcha.2020.102179
Walsh, B., & Hallegatte, S. (2020). Measuring natural risks in the Philippines: Socioeconomic resilience and wellbeing losses. Economics of 

Disasters and Climate Change, 4, 249–293. https://doi.org/10.1007/s41885-019-00047-x
Watson, J. T., Gayer, M., & Connolly, M. A. (2007). Epidemics after natural disasters. Emerging Infectious Diseases, 13(1), 1–5. https://doi.

org/10.3201/eid1301.060779
Weatherill, G., Silva, V., Crowley, H., & Bazzurro, P. (2015). Exploring the impact of spatial correlations and uncertainties for portfolio analy-

sis in probabilistic seismic loss estimation. Bulletin of Earthquake Engineering, 13(4), 957–981. https://doi.org/10.1007/s10518-015-9730-5
Winsemius, H. C., Jongman, B., Veldkamp, T. I., Hallegatte, S., Bangalore, M., & Ward, P. J. (2018). Disaster risk, climate change, and poverty: 

Assessing the global exposure of poor people to floods and droughts. Environment and Development Economics, 3, 328–348. https://doi.
org/10.1017/s1355770x17000444

Wyss, M. (2005). Human losses expected in Himalayan earthquakes. Natural Hazards, 34(3), 305–314. https://doi.org/10.1007/s11069-004-2073-1
Yang, D. Y., & Frangopol, D. M. (2019). Societal risk assessment of transportation networks under uncertainties due to climate change and pop-

ulation growth. Structural Safety, 78, 33–47. https://doi.org/10.1016/j.strusafe.2018.12.005
Yang, D. Y., & Frangopol, D. M. (2020). Risk-based portfolio management of civil infrastructure assets under deep uncertainties associated with 

climate change: A robust optimisation approach. Structure and Infrastructure Engineering, 16(4), 531–546. https://doi.org/10.1080/1573247
9.2019.1639776

Yoon, K. P., & Hwang, C.-L. (1995). Multiple attribute decision making: An introduction. Sage Publications.

https://doi.org/10.1073/pnas.1211658109
https://doi.org/10.1193/042418eqs101o
https://doi.org/10.1007/s11069-013-0618-x
https://doi.org/10.1007/s10518-007-9053-2
https://doi.org/10.4401/ag-7593
https://doi.org/10.1061/ajrua6.0000809
https://doi.org/10.1061/(asce)nh.1527-6996.0000239
https://www.refworld.org/docid/57b6e3e44.html
https://doi.org/10.1016/j.gloenvcha.2020.102179
https://doi.org/10.1007/s41885-019-00047-x
https://doi.org/10.3201/eid1301.060779
https://doi.org/10.3201/eid1301.060779
https://doi.org/10.1007/s10518-015-9730-5
https://doi.org/10.1017/s1355770x17000444
https://doi.org/10.1017/s1355770x17000444
https://doi.org/10.1007/s11069-004-2073-1
https://doi.org/10.1016/j.strusafe.2018.12.005
https://doi.org/10.1080/15732479.2019.1639776
https://doi.org/10.1080/15732479.2019.1639776

	A Simulation-Based Framework for Earthquake Risk-Informed and People-Centered Decision Making on Future Urban Planning
	Abstract
	1. Introduction
	2. Proposed Framework
	3. Case-Study Description
	3.1. Seismic Hazard Module
	3.2. Engineering Impact Module
	3.3. Social Impact Module
	3.4. Proposed Policies
	3.5. Initial Risk Metrics
	3.6. Decision Module
	3.7. Policy With Lowest Overall Risk

	4. Sensitivity Analyses
	5. Conclusions
	Data Availability Statement
	References


